Skip to main content
Log in

Satureja khuzestanica attenuates apoptosis in hyperglycemic PC12 cells and spinal cord of diabetic rats

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Several studies have indicated the involvement of oxidative stress and high glucose-induced cell death in the development of diabetic neuropathy. Satureja khuzestanica has been recommended in the literature as a remedy for the treatment of diabetes, and also contains antioxidant agents. Here, we investigated the possible neuroprotective effects of Satureja khuzestanica extract (SKE) on in vitro and in vivo models of diabetic neuropathy pain. High-glucose-induced damage to pheochromocytoma (PC12) cells and in streptozotocin-induced diabetic rats was studied. Tail-flick and rotarod treadmill tests were used to access nociceptive threshold and motor coordination, respectively. Cell viability was determined by MTT assay. Activated caspase 3 and Bax/Bcl-2 ratio—biochemical markers of apoptosis—were evaluated using immunoblotting. We found that elevating the glucose in the medium (to 4× normal) increased cell toxicity and caspase-3 activation in PC12 cells. Incubation with SKE (200 and 250 μg/ml) decreased cell damage. Furthermore, the diabetic rats developed neuropathy, which was evident from thermal hyperalgesia and motor deficit. Administering SKE at a daily dose of between 50 and 200 mg/kg to the diabetic animals for 3 weeks ameliorated hyperglycemia, weight loss, hyperalgesia, and motor deficit, inhibited caspase 3 activation, and decreased the Bax/Bcl-2 ratio. The results suggest that SKE exerts neuroprotective effects against hyperglycemia-induced cellular damage. The mechanisms of these effects may be related to (at least in part) the prevention of neural apoptosis, and the results suggest that Satureja has the therapeutic potential to attenuate side effects of diabetes, such as neuropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dyck PJ, Albers JW, Andersen H, Arezzo JC, Biessels GJ, Bril V, Feldman EL, Litchy WJ, O’Brien PC, Russell JW (on behalf of the Toronto Expert Panel on Diabetic Neuropathy) (2011) Diabetic polyneuropathies: update on research definition, diagnostic criteria and estimation of severity. Diabetes Metab Res Rev. doi:10.1002/dmrr.1226

  2. Tomlinson DR, Gardiner NJ (2008) Glucose neurotoxicity. Nat Rev Neurosci 9:36–45

    Article  PubMed  CAS  Google Scholar 

  3. Edwards JL, Vincent AM, Cheng HT, Feldman EL (2008) Diabetic neuropathy: mechanisms to management. Pharmacol Ther 120:1–34

    Article  PubMed  CAS  Google Scholar 

  4. Kamboj SS, Vasishta RK, Sandhir R (2010) N-acetylcysteine inhibits hyperglycemia-induced oxidative stress and apoptosis markers in diabetic neuropathy. J Neurochem 112:77–91

    Article  PubMed  CAS  Google Scholar 

  5. Lelkes E, Unsworth BR, Lelkes PI (2001) Reactive oxygen species, apoptosis and altered NGF-induced signaling in PC12 pheochromocytoma cells cultured in elevated glucose: an in vitro cellular model for diabetic neuropathy. Neurotox Res 3:189–203

    Article  PubMed  CAS  Google Scholar 

  6. Russell JW, Golovoy D, Vincent AM, Mahendru P, Olzmann JA, Mentzer A, Feldman EL (2002) High glucose-induced oxidative stress and mitochondrial dysfunction in neurons. FASEB J 16:1738–1748

    Article  PubMed  CAS  Google Scholar 

  7. Ji HF, Zhang HY (2008) Multipotent natural agents to combat Alzheimer’s disease. Functional spectrum and structural features. Acta Pharmacol Sin 29:143–151

    Article  PubMed  CAS  Google Scholar 

  8. Bei W, Zang L, Guo J, Peng W, Xu A, Good DA, Hu Y, Wu W, Hu D, Zhu X, Wei M, Li G (2009) Neuroprotective effects of a standardized flavonoid extract from Diospyros kaki leaves. J Ethnopharmacol 126:134–142

    Article  PubMed  CAS  Google Scholar 

  9. Kaeidi A, Esmaeili-Mahani S, Sheibani V, Abbasnejad M, Rasoulian B, Hajializadeh Z, Afrazi S (2011) Olive (Olea europaea L.) leaf extract attenuates early diabetic neuropathic pain through prevention of high glucose-induced apoptosis: in vitro and in vivo studies. J Ethnopharmacol 136:188–196

    Article  PubMed  Google Scholar 

  10. Zargari A (1990) Medicinal plants. Tehran University Publications, Tehran, pp 42–45

  11. Momtaz S, Abdollahi M (2010) An update on pharmacology of satureja species; from antioxidant, antimicrobial, antidiabetes and anti-hyperlipidemic to reproductive stimulation. Int J Pharmacol 6:346–353

    Article  Google Scholar 

  12. Vosough-Ghanbari S, Rahimi R, Kharabaf S, Zeinali S, Mohammadirad A, Amini S, Yasa N, Salehnia A, Toliat T, Nikfar S, Larijani B, Abdollahi M (2010) Effects of Satureja khuzestanica on serum glucose, lipids and markers of oxidative stress in patients with type 2 diabetes mellitus: a double-blind randomized controlled trial. Evid Based Complement Alternat Med 7:465–470

    Article  PubMed  Google Scholar 

  13. Denizot F, Lang R (1986) Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 89:271–277

    Article  PubMed  CAS  Google Scholar 

  14. Zimmermann M (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16:109–110

    Article  PubMed  CAS  Google Scholar 

  15. Hajializadeh Z, Esmaeili-Mahani S, Sheibani V, Kaeidi A, Atapour M, Abbasnejad M (2010) Changes in the gene expression of specific G-protein subunits correlate with morphine insensitivity in streptozotocin-induced diabetic rats. Neuropeptides 44:299–304

    Article  PubMed  CAS  Google Scholar 

  16. D’Amour FE, Smith DL (1941) A method of determining loss of pain sensation. J Pharmacol Exp Ther 27:74–79

    Google Scholar 

  17. Esmaeili-Mahani S, Shimokawa N, Javan M, Maghsoudi N, Motamedi F, Koibuchi N, Ahmadiani A (2008) Low-dose morphine induces hyperalgesia through activation of Gαs, protein kinase C, and L-type Ca2+ channels in rats. J Neurosci Res 86:471–479

    Article  PubMed  CAS  Google Scholar 

  18. Cartmell SM, Gelgor L, Mitchell D (1991) A revised rota-rod procedure for measuring the effect of antinociceptive drugs on motor function in the rat. J Pharmacol Methods 26:149–159

    Article  PubMed  CAS  Google Scholar 

  19. Vincent AM, Mclean LL, Backus C, Feldman LL (2005) Short-term hyperglycemia produces oxidative damage and apoptosis in neurons. FASEB J 19:638–640

    PubMed  CAS  Google Scholar 

  20. Vincent AM, Callaghan BC, Smith AL, Feldman EL (2011) Diabetic neuropathy: cellular mechanisms as therapeutic targets. Nat Rev Neurol 13:573–583

    Article  Google Scholar 

  21. Pazdro R, Burgess JR (2010) The role of vitamin E and oxidative stress in diabetes complications. Mech Ageing Dev 131:276–286

    Article  PubMed  CAS  Google Scholar 

  22. Guimarães AG, Oliveira GF, Melo MS, Cavalcanti SC, Antoniolli AR, Bonjardim LR, Silva FA, Santos JP, Rocha RF, Moreira JC, Araújo AA, Gelain DP, Quintans-Júnior LJ (2010) Bioassay-guided evaluation of antioxidant and antinociceptive activities of carvacrol. Basic Clin Pharmacol Toxicol 107:949–957

    Article  PubMed  Google Scholar 

  23. Abdollahi M, Salehnia A, Mortazavi SH, Ebrahimi M, Shafiee A, Fouladian F, Keshavarz K, Sorouri S, Khorasani R, Kazemi A (2003) Antioxidant, antidiabetic, antihyperlipidemic, reproduction stimulatory properties and safety of essential oil of Satureja khuzestanica in rat in vivo: a oxicopharmacological study. Med Sci Monit 9:BR331–5

    Google Scholar 

  24. Orrenius S, Gogvadze V, Zhivotovsky B (2007) Mitochondrial oxidative stress: implications for cell death. Annu Rev Pharmacol Toxicol 47:143–183

    Article  PubMed  CAS  Google Scholar 

  25. Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48:749–762

    Article  PubMed  CAS  Google Scholar 

  26. Sharifi AM, Eslami H, Larijani B, Davoodi J (2009) Involvement of caspase-8, -9, and -3 in high glucose-induced apoptosis in PC12 cells. Neurosci Lett 459:47–51

    Article  PubMed  CAS  Google Scholar 

  27. Joseph EK, Levine JD (2004) Caspase signalling in neuropathic and inflammatory pain in the rat. Eur J Neurosci 20:2896–2902

    Article  PubMed  Google Scholar 

  28. Sekiguchi M, Sekiguchi Y, Konno S, Kobayashi H, Homma Y, Kikuchi S (2009) Comparison of neuropathic pain and neuronal apoptosis following nerve root or spinal nerve compression. Eur Spine J 18:1978–1985

    Article  PubMed  Google Scholar 

  29. Amanlou M, Dadkhah F, Salehnia A, Farsam H, Dehpour AR (2005) An anti-inflammatory and anti-nociceptive effects of hydroalcoholic extract of Satureja khuzestanica Jamzad extract. J Pharm Pharm Sci 8:102–106

    PubMed  Google Scholar 

  30. Kumar A, Negi G, Sharma SS (2011) JSH-23 targets nuclear factor-kappa B and reverses various deficits in experimental diabetic neuropathy: effect on neuroinflammation and antioxidant defence. Diabetes Obes Metab 13:750–758

    Article  PubMed  CAS  Google Scholar 

  31. Negi G, Kumar A, Sharma SS (2011) Melatonin modulates neuroinflammation and oxidative stress in experimental diabetic neuropathy: effects on NF-κB and Nrf2 cascades. J Pineal Res 50:124–131

    PubMed  CAS  Google Scholar 

  32. Chopra K, Tiwari V, Arora V, Kuhad A (2010) Sesamol suppresses neuro-inflammatory cascade in experimental model of diabetic neuropathy. J Pain 11:950–957

    Article  PubMed  CAS  Google Scholar 

  33. Guimarães AG, Xavier MA, de Santana MT, Camargo EA, Santos CA, Brito FA, Barreto EO, Cavalcanti SC, Antoniolli AR, Oliveira RC, Quintans-Júnior LJ (2012) Carvacrol attenuates mechanical hypernociception and inflammatory response. Naunyn Schmiedebergs Arch Pharmacol PMID:22139435

  34. Hotta M, Nakata R, Katsukawa M, Hori K, Takahashi S, Inoue H (2010) Carvacrol, a component of thyme oil, activates PPAR alpha and gamma, and suppresses COX-2 expression. J Lipid Res 51:132–139

    Article  PubMed  Google Scholar 

  35. Adriaensen H, Plaghki L, Mathieu C, Joffroy A, Vissers K (2005) Critical review of oral drug treatments for diabetic neuropathic pain-clinical outcomes based on efficacy and safety data from placebo-controlled and direct comparative studies. Diabetes Metab Res Rev 21:231–240

    Article  PubMed  CAS  Google Scholar 

  36. Tesfaye S, Tandan R, Bastyr EJ 3rd, Kles KA, Skljarevski V, Price KL (2007) Factors that impact symptomatic diabetic peripheral neuropathy in placebo-administered patients from two 1-year clinical trials. Diabetes Care 30:2626–2632

    Article  PubMed  Google Scholar 

  37. Shahsavari R, Ehsani-Zonouz A, Houshmand M, Salehnia A, Ahangari G, Firoozrai M (2009) Plasma glucose lowering effect of the wild Satureja khuzestanica Jamzad essential oil in diabetic rats: role of decreased gluconeogenesis. Pak J Biol Sci 12:140–145

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by funds from the Razi Herbal Medicines Research Center, Khoraman Pharmaceutical Co., and Kerman Neuroscience Research Center.

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Esmaeili-Mahani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaeidi, A., Esmaeili-Mahani, S., Abbasnejad, M. et al. Satureja khuzestanica attenuates apoptosis in hyperglycemic PC12 cells and spinal cord of diabetic rats. J Nat Med 67, 61–69 (2013). https://doi.org/10.1007/s11418-012-0646-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-012-0646-y

Keywords

Navigation