Skip to main content
Log in

The rain on underground porous media Part I: Analysis of a richards model

  • Published:
Chinese Annals of Mathematics, Series B Aims and scope Submit manuscript

Abstract

The Richards equation models the water flow in a partially saturated underground porous medium under the surface. When it rains on the surface, boundary conditions of Signorini type must be considered on this part of the boundary. The authors first study this problem which results into a variational inequality and then propose a discretization by an implicit Euler’s scheme in time and finite elements in space. The convergence of this discretization leads to the well-posedness of the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alt, H. W. and Luckhaus, S., Quasilinear elliptic-parabolic differential equations, Math. Z., 183, 1983, 311–341.

    Article  MathSciNet  MATH  Google Scholar 

  2. Alt, H. W., Luckhaus, S. and Visintin, A., On nonstationary flow through porous media, Ann. Mat. Pura Appl., 136, 1984, 303–316.

    Article  MathSciNet  MATH  Google Scholar 

  3. Bernardi, C., El Alaoui, L. and Mghazli, Z., A posteriori analysis of a space and time discretization of a nonlinear model for the flow in variably saturated porous media, submitted.

  4. Berninger, H., Domain decomposition methods for elliptic problems with jumping nonlinearities and application to the Richards equation, Ph. D. Thesis, Freie Universität, Berlin, Germany, 2007.

    Google Scholar 

  5. Brezzi, F., Hager, W. W. and Raviart, P. A., Error estimates for the finite element solution to variational inequalities. II. Mixed methods, Numer. Math., 31, 1978/1979, 1–16.

    Article  MathSciNet  MATH  Google Scholar 

  6. Fabrié, P. and Gallouët, T., Modelling wells in porous media flows, Math. Models Methods Appl. Sci., 10, 2000, 673–709.

    MathSciNet  MATH  Google Scholar 

  7. Gabbouhy, M., Analyse mathématique et simulation numérique des phénom`enes d’écoulement et de transport en milieux poreux non saturés. Application `a la région du Gharb, Ph. D. Thesis, University Ibn Tofail, Kénitra, Morocco, 2000.

    Google Scholar 

  8. Girault, V. and Raviart, P. A., Finite Element Approximation of the Navier-Stokes Equations, Lecture Notes in Mathematics, 749, Springer-Verlag, Berlin, New York, 1979.

    Book  MATH  Google Scholar 

  9. Girault, V. and Raviart, P. A., Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms, Springer-Verlag, Berlin, 1986.

    Book  MATH  Google Scholar 

  10. Glowinski, R., Lions, J. L. and Trémolières, R., Analyse numérique des inéquations variationnelles. 2. Applications aux phénom`enes stationnaires et d’évolution, Collection “Méthodes Mathématiques de l’Informatique” 5, Dunod, Paris, 1976.

    Google Scholar 

  11. Lions, J. L. and Magenes, E., Problèmes aux limites non homogènes et applications, Vol. I, Dunod, Paris, 1968.

  12. Nochetto, R. H. and Verdi, C., Approximation of degenerate parabolic problems using numerical integration, SIAM J. Numer. Anal., 25, 1988, 784–814.

    Article  MathSciNet  MATH  Google Scholar 

  13. Radu, F., Pop, I. S. and Knabner, P., Order of convergence estimates for an Euler implicit, mixed finite element discretization of Richards’ equation, SIAM J. Numer. Anal., 42, 2004, 1452–1478.

    Article  MathSciNet  MATH  Google Scholar 

  14. Rajagopal, K. R., On a hierarchy of approximate models for flows of incompressible fluids through porous solid, Math. Models Methods Appl. Sci., 17, 2007, 215–252.

    Article  MathSciNet  MATH  Google Scholar 

  15. Richards, L. A., Capillary conduction of liquids through porous mediums, Physics, 1, 1931, 318–333.

    Article  MATH  Google Scholar 

  16. Schneid, E., Knabner, P. and Radu, F., A priori error estimates for a mixed finite element discretization of the Richards’ equation, Numer. Math., 98, 2004, 353–370.

    Article  MathSciNet  MATH  Google Scholar 

  17. Sochala, P. and Ern, A., Numerical methods for subsurface flows and coupling with runoff, to appear.

  18. Sochala, P., Ern, A. and Piperno, S., Mass conservative BDF-discontinuous Galerkin/explicit finite volume schemes for coupling subsurface and overland flows, Comput. Methods Appl. Mech. Engrg., 198, 2009, 2122–2136.

    Article  MathSciNet  MATH  Google Scholar 

  19. Woodward, C. S. and Dawson, C. N., Analysis of expanded mixed finite element methods for a nonlinear parabolic equation modeling flow into variably saturated porous media, SIAM J. Numer. Anal., 37, 2000, 701–724.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Bernardi.

Additional information

In honor of the scientific heritage of Jacques-Louis Lions

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernardi, C., Blouza, A. & El Alaoui, L. The rain on underground porous media Part I: Analysis of a richards model. Chin. Ann. Math. Ser. B 34, 193–212 (2013). https://doi.org/10.1007/s11401-013-0766-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-013-0766-z

Keywords

2000 MR Subject Classification

Navigation