Skip to main content
Log in

Reproduction, social behavior, and aging trajectories in honeybee workers

  • Published:
AGE Aims and scope Submit manuscript

Abstract

While a negative correlation between reproduction and life span is commonly observed, specialized reproductive individuals outlive their non-reproductive nestmates in all eusocial species, including the honeybee, Apis mellifera (L). The consequences of reproduction for individual life expectancy can be studied directly by comparing reproductive and non-reproductive workers. We quantified the life span consequences of reproduction in honeybee workers by removal of the queen to trigger worker reproduction. Furthermore, we observed the social behavior of large cohorts of workers under experimental and control conditions to test for associations with individual life expectancy. Worker life expectancy was moderately increased by queen removal. Queenless colonies contained a few long-lived workers, and oviposition behavior was associated with a strong reduction in mortality risk, indicating that a reproductive role confers a significant survival advantage. This finding is further substantiated by an association between brood care behavior and worker longevity that depends on the social environment. In contrast, other in-hive activities, such as fanning, trophallaxis, and allogrooming did not consistently affect worker life expectancy. The influence of foraging varied among replicates. An earlier age of transitioning from in-hive tasks to outside foraging was always associated with shorter life spans, in accordance with previous studies. In sum, our studies quantify how individual mortality is affected by particular social roles and colony environments and demonstrate interactions between the two. The exceptional, positive association between reproduction and longevity in honeybees extends to within-caste plasticity, which may be exploited for mechanistic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aamodt RM (2009) Age-and caste-dependent decrease in expression of genes maintaining DNA and RNA quality and mitochondrial integrity in the honeybee wing muscle. Exp Gerontol 44(9):586–593. doi:10.1016/j.exger.2009.06.004

    Article  CAS  PubMed  Google Scholar 

  • Amdam GV, Page RE (2005) Intergenerational transfers may have decoupled physiological and chronological age in a eusocial insect. Aging Res Rev 4(3):398–408

    Article  Google Scholar 

  • Amdam GV, Rueppell O, Fondrk MK, Page RE, Nelson CM (2009) The nurse's load: early-life exposure to brood-rearing affects behavior and life span in honeybees (Apis mellifera). Exp Gerontol 44(6–7):467–471

    Article  PubMed Central  PubMed  Google Scholar 

  • Backx AG, Guzman-Novoa E, Thompson GJ (2012) Factors affecting ovary activation in honeybee workers: a meta-analysis. Insect Soc 59(3):381–388. doi:10.1007/s00040-012-0230-1

    Article  Google Scholar 

  • Carey JR, Papadopoulos N, Kouloussis N, Katsoyannos B, Muller HG, Wang JL, Tseng YK (2006) Age-specific and lifetime behavior patterns in Drosophila melanogaster and the Mediterranean fruit fly, Ceratitis capitata. Exp Gerontol 41(1):93–97. doi:10.1016/j.exger.2005.09.014

    Article  PubMed Central  PubMed  Google Scholar 

  • Corona M, Hughes KA, Weaver DB, Robinson GE (2005) Gene expression patterns associated with queen honeybee longevity. Mech Ageing Dev 126(11):1230–1238

    Article  CAS  PubMed  Google Scholar 

  • Corona M, Velarde RA, Remolina S, Moran-Lauter A, Wang Y, Hughes KA, Robinson GE (2007) Vitellogenin, juvenile hormone, insulin signaling, and queen honeybee longevity. Proc Natl Acad Sci U S A 104(17):7128–7133

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • De Loof A (2011) Longevity and aging in insects: is reproduction costly; cheap; beneficial or irrelevant? A critical evaluation of the “trade-off” concept. J Ins Physiol 57(1):1–11

    Article  Google Scholar 

  • de Magalhaes JP, Curado J, Church GM (2009) Meta-analysis of age-related gene expression profiles identifies common signatures of aging. Bioinformatics 25(7):875–881. doi:10.1093/bioinformatics/btp073

    Article  PubMed  Google Scholar 

  • Delaplane KS, Harbo JR (1987) Effect of queenlessness on worker survival, honey gain and defense behavior in honeybees. J Apic Res 26(1):37–42

    Google Scholar 

  • Dukas R (2008) Mortality rates of honeybees in the wild. Insect Soc 55(3):252–255. doi:10.1007/s00040-008-0995-4

    Article  Google Scholar 

  • Eban-Rothschild AD, Bloch G (2008) Differences in the sleep architecture of forager and young honeybees (Apis mellifera). J Exp Biol 211(Pt 15):2408–2416. doi:10.1242/jeb.016915

    Article  PubMed  Google Scholar 

  • Finch CE, Tanzi RE (1997) Genetics of aging. Science 278(5337):407–411. doi:10.1126/science.278.5337.407

    Article  CAS  PubMed  Google Scholar 

  • Ford D (2012) Honeybees and cell lines as models of DNA methylation and aging in response to diet. Exp Gerontol. doi:10.1016/j.exger.2012.07.010

    PubMed  Google Scholar 

  • Free JB (1958) The drifting of honeybees. J Agric Sci 51:294–306

    Article  Google Scholar 

  • Graham AM, Munday MD, Kaftanoglu O, Page RE Jr, Amdam GV, Rueppell O (2011) Support for the reproductive ground plan hypothesis of social evolution and major QTL for ovary traits of Africanized worker honeybees (Apis mellifera L.). BMC Evol Biol 11:95

    Article  PubMed Central  PubMed  Google Scholar 

  • Grozinger CM, Fan YL, Hoover SER, Winston ML (2007) Genome-wide analysis reveals differences in brain gene expression patterns associated with caste and reproductive status in honeybees (Apis mellifera). Mol Ecol 16(22):4837–4848

    Article  CAS  PubMed  Google Scholar 

  • Haddad LS, Kelbert L, Hulbert AJ (2007) Extended longevity of queen honeybees compared to workers is associated with peroxidation-resistant membranes. Exp Gerontol 42(7):601–609

    Article  CAS  PubMed  Google Scholar 

  • Hartmann A, Heinze J (2003) Lay eggs, live longer: division of labor and life span in a clonal ant species. Evolution 57(10):2424–2429

    PubMed  Google Scholar 

  • Herb BR, Wolschin F, Hansen KD, Aryee MJ, Langmead B, Irizarry R, Amdam GV, Feinberg AP (2012) Reversible switching between epigenetic states in honeybee behavioral subcastes. Nat Neurosci 15(10):1371–1373

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hoover SER, Keeling CI, Winston ML, Slessor KN (2003) The effect of queen pheromones on worker honeybee ovary development. Naturwissenschaften 90(10):477–480

    Article  CAS  PubMed  Google Scholar 

  • Keller L, Genoud M (1997) Extraordinary life spans in ants: a test of evolutionary theories of ageing. Nature 389:958–960

    Article  CAS  Google Scholar 

  • Kenyon C (2005) The plasticity of aging: insights from long-lived mutants. Cell 120(4):449–460. doi:10.1016/j.cell.2006.02.002

    Article  CAS  PubMed  Google Scholar 

  • Kucharski R, Maleszka J, Foret S, Maleszka R (2008) Nutritional control of reproductive status in honeybees via DNA methylation. Science 319(5871):1827–1830

    Article  CAS  PubMed  Google Scholar 

  • Kuszewska K, Woyciechowski M (2013) Reversion in honeybee, Apis mellifera, workers with different life expectancies. Anim Behav 85(1):247–253

    Article  Google Scholar 

  • Laidlaw HH, Page RE (1997) Queen rearing and bee breeding. Wicwas Press, Cheshire

    Google Scholar 

  • Lattorff HMG, Moritz RFA, Crewe RM, Solignac M (2007) Control of reproductive dominance by the thelytoky gene in honeybees. Biol Lett 3(3):292–295

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Le Conte Y, Hefetz A (2008) Primer pheromones in social hymenoptera. Annu Rev Entomol 53:523–542

    Article  PubMed  Google Scholar 

  • Mackay TF (2002) The nature of quantitative genetic variation for Drosophila longevity. Mech Ageing Dev 123(2–3):95–104

    Article  PubMed  Google Scholar 

  • Makert GR, Paxton RJ, Hartfelder K (2006) Ovariole number—a predictor of differential reproductive success among worker subfamilies in queenless honeybee (Apis mellifera L.) colonies. Behav Ecol Sociobiol 60(6):815–825

    Article  Google Scholar 

  • Neukirch A (1982) Dependence of the life span of the honeybee (Apis mellifica) upon flight performance and energy consumption. J Comp Physiol 146:35–40

    CAS  Google Scholar 

  • Omholt SW, Amdam GV (2004) Epigenic regulation of aging in honeybee workers. Sci Aging Knowl Environ 26:pe28

    Google Scholar 

  • Page RE, Erickson EH (1988) Reproduction by worker honeybees (Apis mellifera L). Behav Ecol Sociobiol 23(2):117–126

    Article  Google Scholar 

  • Page RE, Metcalf RA (1984) A population investment sex ratio for the honeybee (Apis mellifera L.). Am Nat 124:680–702

    Article  Google Scholar 

  • Page RE, Peng Y-SC (2001) Aging and development in social insects with emphasis on the honeybee, Apis mellifera L. Exp Gerontol 36(4–6):695–711

    Article  PubMed  Google Scholar 

  • Page RE, Robinson GE (1994) Reproductive competition in queenless honeybee colonies (Apis mellifera L). Behav Ecol Sociobiol 35(2):99–107

    Article  Google Scholar 

  • Remolina SC, Hughes KA (2008) Evolution and mechanisms of long life and high fertility in queen honeybees. AGE 30(2–3):177–185

    Article  PubMed  Google Scholar 

  • Robinson GE, Page RE, Fondrk MK (1990) Intracolonial behavioral variation in worker oviposition, oophagy, and larval care in queenless honeybee colonies. Behav Ecol Sociobiol 26:315–323

    Article  Google Scholar 

  • Rueppell O, Amdam GV, Page RE Jr, Carey JR (2004) From genes to society: Social insects as models for research on aging. Sci Aging Knowl Environ 5:pe5

    Google Scholar 

  • Rueppell O, Bachelier C, Fondrk MK, Page RE Jr (2007) Regulation of life history determines life span of worker honeybees (Apis mellifera L.). Exp Gerontol 42:1020–1032

    Article  PubMed Central  PubMed  Google Scholar 

  • Rueppell O, Linford R, Gardner P, Coleman J, Fine K (2008) Aging and demographic plasticity in response to experimental age structures in honeybees (Apis mellifera L). Behav Ecol Sociobiol 62:1621–1631

    Article  PubMed Central  PubMed  Google Scholar 

  • Rueppell O, Kaftanouglu O, Page RE (2009) Honeybee (Apis mellifera) workers live longer in small than in large colonies. Exp Gerontol 44(6–7):447–452

    Article  PubMed Central  PubMed  Google Scholar 

  • Rueppell O, Phaincharoen M, Kuster R, Tingek S (2011) Cross-species correlation between queen mating numbers and worker ovary sizes suggests kin conflict may influence ovary size evolution in honeybees. Naturwissenschaften 98(9):795–799. doi:10.1007/s00114-011-0822-z

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smedal B, Brynem M, Kreibich CD, Amdam GV (2009) Brood pheromone suppresses physiology of extreme longevity in honeybees (Apis mellifera). J Exp Biol 212(23):3795–3801. doi:10.1242/jeb.035063

    Article  CAS  PubMed  Google Scholar 

  • Stout TL, Slone JD, Schneider SS (2011) Age and behavior of honeybee workers, Apis mellifera, that interact with drones. Ethology 117(5):459–468. doi:10.1111/j.1439-0310.2011.01895.x

    Article  Google Scholar 

  • Tezze AA, Farina WM (1999) Trophallaxis in the honeybee, Apis mellifera: the interaction between viscosity and sucrose concentration of the transferred solution. Anim Behav 57:1319–1326. doi:10.1006/anbe.1999.1110

    Article  PubMed  Google Scholar 

  • The “R” Development Core Team (2005) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

  • Wilson-Rich N, Spivak M, Fefferman NH, Starks PT (2009) Genetic, individual, and group facilitation of disease resistance in insect societies. Annu Rev Entomol 54:405–423

    Article  CAS  PubMed  Google Scholar 

  • Winston ML (1987) The biology of the honeybee. Harvard University Press, Cambridge

    Google Scholar 

  • Woyciechowski M, Kozlowski J (1998) Division of labor by division of risk according to worker life expectancy in the honeybee (Apis mellifera L.). Apidologie 29:191–205

    Article  Google Scholar 

  • Woyciechowski M, Moron D (2009) Life expectancy and onset of foraging in the honeybee (Apis mellifera). Insect Soc 56(2):193–201

    Article  Google Scholar 

Download references

Acknowledgments

This study would not have been possible without the practical help of Tara McCray. We would also like to acknowledge the encouragement and help by the other members of the Social Insect Lab at UNCG. Financial support for this project was provided by the National Science Foundation (grants: #0850465 and # 0926288) and the Agriculture and Food Research Initiative of the USDA National Institute of Food and Agriculture (#2010-65104-20533) to OR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olav Rueppell.

Additional information

Authors Luke Dixon and Ryan Kuster contributed equally to this work.

About this article

Cite this article

Dixon, L., Kuster, R. & Rueppell, O. Reproduction, social behavior, and aging trajectories in honeybee workers. AGE 36, 89–101 (2014). https://doi.org/10.1007/s11357-013-9546-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-013-9546-7

Keywords

Navigation