Skip to main content
Log in

Changes in behaviors of male C57BL/6J mice across adult life span and effects of dietary restriction

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Behavioral analysis is a high-end read-out of aging impact on an organism, and here, we have analyzed behaviors in 4-, 22-, and 28-month-old male C57BL/6J with a broad range of tests. For comparison, a group of 28-month-old males maintained on dietary restriction (DR) was included. The most conspicuous alteration was the decline in exploration activity with advancing age. Aging also affected other behaviors such as motor skill acquisition and grip strength, in contrast to latency to thermal stimuli and visual placement which were unchanged. Object recognition tests revealed intact working memory at 28 months while memory recollection was impaired already at 22 months. Comparison with female C57BL/6J (Fahlström et al., Neurobiol Aging 32:1868–1880, 2011) revealed that alterations in aged males and females are similar and that several of the behavioral indices correlate with age in both sexes. Moreover, we examined if behavioral indices in 22-month-old males could predict remaining life span as suggested in the study by Ingram and Reynolds (Exp Aging Res 12(3):155–162, 1986) and found that exploratory activity and motor skills accounted for up to 65% of the variance. Consistent with that a high level of exploratory activity and preserved motor capacity indicated a long post-test survival, 28-month-old males maintained on DR were more successful in such tests than ad libitum fed age-matched males. In summary, aged C57BL/6J males are marked by a reduced exploratory activity, an alteration that DR impedes. In light of recently published data, we discuss if a diminishing drive to explore may associate with aging-related impairment of central aminergic pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Altun M, Bergman E, Edstrom E, Johnson H, Ulfhake B (2007) Behavioral impairments of the aging rat. Physiol Behav 92(5):911–923. doi:10.1016/j.physbeh.2007.06.017

    Article  PubMed  CAS  Google Scholar 

  • Anderson RM, Weindruch R (2010) Metabolic reprogramming, caloric restriction and aging. Trends Endocrinol Metab 21(3):134–141. doi:10.1016/j.tem.2009.11.005

    Article  PubMed  CAS  Google Scholar 

  • Aston-Jones G, Cohen JD (2005) An integrative theory of locus coeruleus–norepinephrine function: adaptive gain and optimal performance. Annu Rev Neurosci 28:403–450. doi:10.1146/annurev.neuro.28.061604.135709

    Article  PubMed  CAS  Google Scholar 

  • Baur JA, Chen D, Chini EN, Chua K, Cohen HY, de Cabo R, Deng C, Dimmeler S, Gius D, Guarente LP, Helfand SL, Imai S, Itoh H, Kadowaki T, Koya D, Leeuwenburgh C, McBurney M, Nabeshima Y, Neri C, Oberdoerffer P, Pestell RG, Rogina B, Sadoshima J, Sartorelli V, Serrano M, Sinclair DA, Steegborn C, Tatar M, Tissenbaum HA, Tong Q, Tsubota K, Vaquero A, Verdin E (2010) Dietary restriction: standing up for sirtuins. Science 329(5995):1012–1013. doi:10.1126/science.329.5995.1012329/5995/1012, author reply 1013–1014

    Article  PubMed  CAS  Google Scholar 

  • Bendesky A, Tsunozaki M, Rockman MV, Kruglyak L, Bargmann CI (2011) Catecholamine receptor polymorphisms affect decision-making in C. elegans. Nature 472(7343):313–318. doi:10.1038/nature09821

    Article  PubMed  CAS  Google Scholar 

  • Benice TS, Rizk A, Kohama S, Pfankuch T, Raber J (2006) Sex-differences in age-related cognitive decline in C57BL/6J mice associated with increased brain microtubule-associated protein 2 and synaptophysin immunoreactivity. Neuroscience 137(2):413–423

    Article  PubMed  CAS  Google Scholar 

  • Bothe GW, Bolivar VJ, Vedder MJ, Geistfeld JG (2004) Genetic and behavioral differences among five inbred mouse strains commonly used in the production of transgenic and knockout mice. Genes Brain Behav 3(3):149–157. doi:10.1111/j.1601-183x.2004.00064.x

    Article  PubMed  CAS  Google Scholar 

  • Bryant CD, Zhang NN, Sokoloff G, Fanselow MS, Ennes HS, Palmer AA, McRoberts JA (2008) Behavioral differences among C57BL/6 substrains: implications for transgenic and knockout studies. J Neurogenet 22(4):315–331. doi:10.1080/01677060802357388

    Article  PubMed  CAS  Google Scholar 

  • Bucan M, Abel T (2002) The mouse: genetics meets behaviour. Nat Rev Genet 3(2):114–123. doi:10.1038/nrg728

    Article  PubMed  CAS  Google Scholar 

  • Burger JM, Buechel SD, Kawecki TJ (2010) Dietary restriction affects lifespan but not cognitive aging in Drosophila melanogaster. Aging Cell 9(3):327–335. doi:10.1111/j.1474-9726.2010.00560.x

    Article  PubMed  CAS  Google Scholar 

  • Carter RJ, Morton J, Dunnett SB (2001) Motor coordination and balance in rodents. Curr Protoc Neurosci Chapter 8:Unit 8 12

    Google Scholar 

  • Chen D, Steele AD, Lindquist S, Guarente L (2005) Increase in activity during calorie restriction requires Sirt1. Science 310(5754):1641. doi:10.1126/science.1118357

    Article  PubMed  CAS  Google Scholar 

  • Chia R, Achilli F, Festing MF, Fisher EM (2005) The origins and uses of mouse outbred stocks. Nat Genet 37(11):1181–1186. doi:10.1038/ng1665

    Article  PubMed  CAS  Google Scholar 

  • Clifton GL, Jiang JY, Lyeth BG, Jenkins LW, Hamm RJ, Hayes RL (1991) Marked protection by moderate hypothermia after experimental traumatic brain injury. J Cerebral Blood Flow and Metabolism 11:114–121

    Article  CAS  Google Scholar 

  • Collier TJ, Coleman PD (1991) Divergence of biological and chronological aging: evidence from rodent studies. Neurobiol Aging 12(6):685–693

    Article  PubMed  CAS  Google Scholar 

  • Cowen T, Ulfhake B, King RHM (2005) Aging in the peripheral nervous system. In: Dyck PJ, Thomas PK (eds) Peripheral neuropathy, vol 1. Elsevier Saunders, Philadelphia, pp 483–507

    Chapter  Google Scholar 

  • Crabbe JC, Wahlsten D, Dudek BC (1999) Genetics of mouse behavior: interactions with laboratory environment. Science 284(5420):1670–1672

    Article  PubMed  CAS  Google Scholar 

  • Crawley JN, Belknap JK, Collins A, Crabbe JC, Frankel W, Henderson N, Hitzemann RJ, Maxson SC, Miner LL, Silva AJ, Wehner JM, Wynshaw-Boris A, Paylor R (1997) Behavioral phenotypes of inbred mouse strains: implications and recommendations for molecular studies. Psychopharmacology (Berl) 132(2):107–124

    Article  CAS  Google Scholar 

  • Crawley JN, Paylor R (1997) A proposed test battery and constellations of specific behavioral paradigms to investigate the behavioral phenotypes of transgenic and knockout mice. Horm Behav 31(3):197–211

    Article  PubMed  CAS  Google Scholar 

  • Crusio WE, Goldowitz D, Holmes A, Wolfer D (2009) Standards for the publication of mouse mutant studies. Genes Brain Behav 8(1):1–4. doi:10.1111/j.1601-183X.2008.00438.x

    Article  PubMed  CAS  Google Scholar 

  • Dean RL III, Scozzafava J, Goas JA, Regan B, Beer B, Bartus RT (1981) Age-related differences in behavior across life span of the C57BL/6J mouse. Experimental Aging Res 7(4):427–451

    Article  Google Scholar 

  • Diaz Heijtz R, Scott L, Forssberg H (2004) Alteration of dopamine D1 receptor-mediated motor inhibition and stimulation during development in rats is associated with distinct patterns of c-fos mRNA expression in the frontal–striatal circuitry. Eur J Neurosci 19(4):945–956

    Article  PubMed  Google Scholar 

  • Edstrom E, Ulfhake B (2005) Sarcopenia is not due to lack of regenerative drive in senescent skeletal muscle. Aging Cell 4(2):65–77

    Article  PubMed  Google Scholar 

  • Ennaceur A, Delacour J (1988) A new one-trial test for neurobiological studies of memory in rats. 1: Behavioral data. Behav Brain Res 31(1):47–59

    Article  PubMed  CAS  Google Scholar 

  • Espejo EF, Mir D (1993) Structure of the rat’s behaviour in the hot plate test. Behavioural Brain Res 56(2):171–176

    Article  CAS  Google Scholar 

  • Fahlström A, Yu Q, Ulfhake B (2011) Behavioral changes in aging female C57BL/6 mice. Neurobiol Aging 32(10):1868–1880

    Google Scholar 

  • Fernandez SM, Lewis MC, Pechenino AS, Harburger LL, Orr PT, Gresack JE, Schafe GE, Frick KM (2008) Estradiol-induced enhancement of object memory consolidation involves hippocampal extracellular signal-regulated kinase activation and membrane-bound estrogen receptors. J Neurosci 28(35):8660–8667

    Article  PubMed  CAS  Google Scholar 

  • Fontan-Lozano A, Saez-Cassanelli JL, Inda MC, de los Santos-Arteaga M, Sierra-Dominguez SA, Lopez-Lluch G, Delgado-Garcia JM, Carrion AM (2007) Caloric restriction increases learning consolidation and facilitates synaptic plasticity through mechanisms dependent on NR2B subunits of the NMDA receptor. J Neurosci 27(38):10185–10195. doi:10.1523/JNEUROSCI.2757-07.2007

    Article  PubMed  CAS  Google Scholar 

  • Forster MJ, Dubey A, Dawson KM, Stutts WA, Lal H, Sohal RS (1996) Age-related losses of cognitive function and motor skills in mice are associated with oxidative protein damage in the brain. Proc Natl Acad Sci USA 93(10):4765–4769

    Article  PubMed  CAS  Google Scholar 

  • Fox WM (1965) Reflex-ontogeny and behavioural development of the mouse. Anim Behav 13(2):234–241

    Article  PubMed  CAS  Google Scholar 

  • Frick KM (2009) Estrogens and age-related memory decline in rodents: what have we learned and where do we go from here? Horm Behav 55(1):2–23. doi:10.1016/j.yhbeh.2008.08.015

    Article  PubMed  CAS  Google Scholar 

  • Frick KM, Burlingame LA, Arters JA, Berger-Sweeney J (2000) Reference memory, anxiety and estrous cyclicity in C57BL/6NIA mice are affected by age and sex. Neuroscience 95(1):293–307

    Article  PubMed  CAS  Google Scholar 

  • Goodrick CL (1967) Behavioral characteristics of young and senescent inbred female mice of the C57BL-6J strain. J Gerontol 22(4):459–464

    PubMed  CAS  Google Scholar 

  • Goodrick CL (1973) Exploration activity and emotionality of albino and pigmented mice: inheritance and effects of test illumination. J Comp Physiol Psychol 84(1):73–81

    Article  PubMed  CAS  Google Scholar 

  • Goodrick CL (1975) Behavioral differences in young and aged mice: strain differences for activity measures, operant learning, sensory discrimination, and alcohol preference. Exp Aging Res 1(2):191–207

    Article  PubMed  CAS  Google Scholar 

  • Guarente L, Picard F (2005) Calorie restriction—the SIR2 connection. Cell 120(4):473–482. doi:10.1016/j.cell.2005.01.029

    Article  PubMed  CAS  Google Scholar 

  • Holloszy JO, Schechtman KB (1991) Interaction between exercise and food restriction: effects on longevity of male rats. J Appl Physiol 70(4):1529–1535

    PubMed  CAS  Google Scholar 

  • Idrobo F, Nandy K, Mostofsky DI, Blatt L, Nandy L (1987) Dietary restriction: effects on radial maze learning and lipofuscin pigment deposition in the hippocampus and frontal cortex. Arch Gerontol Geriatr 6(4):355–362

    Article  PubMed  CAS  Google Scholar 

  • Ikeno Y, Hubbard GB, Lee S, Richardson A, Strong R, Diaz V, Nelson JF (2005) Housing density does not influence the longevity effect of calorie restriction. J Gerontol A Biol Sci Med Sci 60(12):1510–1517

    Article  PubMed  Google Scholar 

  • Ingram DK (1988) Motor performance variability during aging in rodents assessment of reliability and validity of individual differences. Ann N Y Acad Sci 515:70–96

    Article  PubMed  CAS  Google Scholar 

  • Ingram DK (1996) Brain-behavior linkages in aged rodent models: strategies for examining individual differences. Neurobiol Aging 17(3):497–499, discussion 500

    Article  PubMed  CAS  Google Scholar 

  • Ingram DK, Archer JR, Harrison DE, Reynolds MA (1982) Physiological and behavioral correlates of lifespan in aged C57BL/6J mice. Exp Gerontol 17(4):295–303

    Article  PubMed  CAS  Google Scholar 

  • Ingram DK, Jucker M (1999) Developing mouse models of aging: a consideration of strain differences in age-related behavioral and neural parameters. Neurobiol Aging 20(2):137–145

    Article  PubMed  CAS  Google Scholar 

  • Ingram DK, London ED, Reynolds MA, Waller SB, Goodrick CL (1981) Differential effects of age on motor performance in two mouse strains. Neurobiol Aging 2(3):221–227

    Article  PubMed  CAS  Google Scholar 

  • Ingram DK, Reynolds MA (1983) Effects of protein, dietary restriction, and exercise on survival in adult rats: a re-analysis of McCay, Maynard, Sperling, and Osgood [1941]. Exp Aging Res 9(1):41–42

    PubMed  CAS  Google Scholar 

  • Ingram DK, Reynolds MA (1986) Assessing the predictive validity of psychomotor tests as measures of biological age in mice. Exp Aging Res 12(3):155–162

    Article  PubMed  CAS  Google Scholar 

  • Ingram DK, Reynolds MA (1987) The relationship of body weight to longevity within laboratory rodent species. Basic Life Sci 42:247–282

    PubMed  CAS  Google Scholar 

  • Irwin S, Banuazizi A, Kalsner S, Curtis A (1968) One trial learning in the mouse I. Its characteristics and modification by experimental–seasonal variables. Psychopharmacologia 12(4):286–302

    Article  PubMed  CAS  Google Scholar 

  • Johnson H, Ulfhake B, Dagerlind A, Bennett GW, Fone KC TH (1993) The serotoninergic bulbospinal system and brainstem-spinal cord content of serotonin-, TRH-, and substance P-like immunoreactivity in the aged rat with special reference to the spinal cord motor nucleus. Synapse 15:63–89

    Article  PubMed  CAS  Google Scholar 

  • Karl T, Pabst R, von Horsten S (2003) Behavioral phenotyping of mice in pharmacological and toxicological research. Exp Toxicol Pathol 55(1):69–83

    Article  PubMed  Google Scholar 

  • Langerman L, Zakowski MI, Piskoun B, Grant GJ (1995) Hot plate versus tail flick: evaluation of acute tolerance to continuous morphine infusion in the rat model. J Pharmacol Toxicol Meth 34(1):23–27

    Article  CAS  Google Scholar 

  • Lau AA, Crawley AC, Hopwood JJ, Hemsley KM (2008) Open field locomotor activity and anxiety-related behaviors in mucopolysaccharidosis type IIIA mice. Behav Brain Res 191(1):130–136

    Article  PubMed  CAS  Google Scholar 

  • Lister RG (1987) The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology (Berl) 92(2):180–185

    Article  CAS  Google Scholar 

  • Matsuo N, Takao K, Nakanishi K, Yamasaki N, Tanda K, Miyakawa T (2010) Behavioral profiles of three C57BL/6 substrains. Front Behav Neurosci 4:29. doi:10.3389/fnbeh.2010.00029

    PubMed  Google Scholar 

  • Mattson MP (2010) The impact of dietary energy intake on cognitive aging. Front Aging Neurosci 2:5. doi:10.3389/neuro.24.005.2010

    PubMed  Google Scholar 

  • McCarter RJ, Shimokawa I, Ikeno Y, Higami Y, Hubbard GB, Yu BP, McMahan CA (1997) Physical activity as a factor in the action of dietary restriction on aging: effects in Fischer 344 rats. Aging (Milano) 9(1–2):73–79

    CAS  Google Scholar 

  • McCay CM, Crowell MF, Maynard LA (1989) The effect of retarded growth upon the length of life span and upon the ultimate body size. 1935. Nutrition 5(3):155–171, discussion 172

    PubMed  CAS  Google Scholar 

  • McIlwain KL, Merriweather MY, Yuva-Paylor LA, Paylor R (2001) The use of behavioral test batteries: effects of training history. Physiol Behav 73(5):705–717

    Article  PubMed  CAS  Google Scholar 

  • Mekada K, Abe K, Murakami A, Nakamura S, Nakata H, Moriwaki K, Obata Y, Yoshiki A (2009) Genetic differences among C57BL/6 substrains. Exp Anim 58(2):141–149

    Article  PubMed  CAS  Google Scholar 

  • Metz GA, Schwab ME (2004) Behavioral characterization in a comprehensive mouse test battery reveals motor and sensory impairments in growth-associated protein-43 null mutant mice. Neuroscience 129(3):563–574

    Article  PubMed  CAS  Google Scholar 

  • Minor RK, Villarreal J, McGraw M, Percival SS, Ingram DK, de Cabo R (2008) Calorie restriction alters physical performance but not cognition in two models of altered neuroendocrine signaling. Behav Brain Res 189(1):202–211. doi:10.1016/j.bbr.2007.12.030

    Article  PubMed  CAS  Google Scholar 

  • Moldin SO, Farmer ME, Chin HR, Battey JF Jr (2001) Trans-NIH neuroscience initiatives on mouse phenotyping and mutagenesis. Mamm Genome 12(8):575–581

    Article  PubMed  CAS  Google Scholar 

  • Montgomery KC (1958) The relation between fear induced by novel stimulation and exploratory behavior. J Comp Physiol Psychol 4(8):254–260

    Google Scholar 

  • Paigen K, Eppig JT (2000) A mouse phenome project. Mamm Genome 11(9):715–717. doi:10.1007/s003350010152

    Article  PubMed  CAS  Google Scholar 

  • Pellow S, Chopin P, File SE, Briley M (1985) Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 14(3):149–167

    Article  PubMed  CAS  Google Scholar 

  • Rogers DC, Fisher EM, Brown SD, Peters J, Hunter AJ, Martin JE (1997) Behavioral and functional analysis of mouse phenotype: SHIRPA, a proposed protocol for comprehensive phenotype assessment. Mamm Genome 8(10):711–713

    Article  PubMed  CAS  Google Scholar 

  • Rogers DC, Jones DN, Nelson PR, Jones CM, Quilter CA, Robinson TL, Hagan JJ (1999) Use of SHIRPA and discriminant analysis to characterise marked differences in the behavioural phenotype of six inbred mouse strains. Behav Brain Res 105(2):207–217

    Article  PubMed  CAS  Google Scholar 

  • Southwick CH, Clark LH (1968) Interstrain differences in aggressive behavior and explorative activity of inbred mice. Communications in Behavioral Biology, Part A, 1, 49–59.

    Google Scholar 

  • Sprott RL, Eleftheriou BE (1974) Open-field behavior in aging inbred mice. Gerontologia 20(3):155–162

    Article  PubMed  CAS  Google Scholar 

  • Stunkard AJ (1983) Nutrition, aging and obesity: a critical review of a complex relationship. Int J Obes 7(3):201–220

    PubMed  CAS  Google Scholar 

  • Swindell WR, Harper JM, Miller RA (2008) How long will my mouse live? Machine learning approaches for prediction of mouse life span. J Gerontol A Biol Sci Med Sci 63(9):895–906

    Article  PubMed  Google Scholar 

  • Taft RA, Davisson M, Wiles MV (2006) Know thy mouse. Trends Genet 22(12):649–653. doi:10.1016/j.tig.2006.09.010

    Article  PubMed  CAS  Google Scholar 

  • Thompson WR (1953) The inheritance of behaviour: behavioural differences in fifteen mouse strains. Can J Psychol 7(4):145–155

    Google Scholar 

  • Ulfhake B, Bergman E, Fundin BT (2002) Impairment of peripheral sensory innervation in senescence. Auton Neurosci 96(1):43–49

    Article  CAS  Google Scholar 

  • Wahlsten D, Metten P, Phillips TJ, Boehm SL 2nd, Burkhart-Kasch S, Dorow J, Doerksen S, Downing C, Fogarty J, Rodd-Henricks K, Hen R, McKinnon CS, Merrill CM, Nolte C, Schalomon M, Schlumbohm JP, Sibert JR, Wenger CD, Dudek BC, Crabbe JC (2003) Different data from different labs: lessons from studies of gene–environment interaction. J Neurobiol 54(1):283–311. doi:10.1002/neu.10173

    Article  PubMed  Google Scholar 

  • Walf AA, Frye CA (2007) The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc 2(2):322–328

    Article  PubMed  CAS  Google Scholar 

  • Van Loo PL, Van Zutphen LF, Baumans V (2003) Male management: coping with aggression problems in male laboratory mice. Lab Anim 37(4):300–313. doi:10.1258/002367703322389870

    Article  PubMed  Google Scholar 

  • van Luijtelaar MG, Steinbusch HW, Tonnaer JA (1988) Aberrant morphology of serotonergic fibers in the forebrain of the aged rat. Neurosci Lett 95(1–3):93–96

    Article  PubMed  Google Scholar 

  • Wax TM, Goodrick CL (1978) Nearness to death and wheelrunning behavior in mice. Exp Gerontol 13(3–4):233–236

    Article  PubMed  CAS  Google Scholar 

  • Weed JL, Lane MA, Roth GS, Speer DL, Ingram DK (1997) Activity measures in rhesus monkeys on long-term calorie restriction. Physiol Behav 62(1):97–103

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The use of laboratory animals was under the ethical permits N253/08 and N120/09 (to B. Ulfhake). The work was supported by grants from The Swedish Research Council (VR to B. Ulfhake).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brun Ulfhake.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM. 1

(DOC 3628 kb)

About this article

Cite this article

Fahlström, A., Zeberg, H. & Ulfhake, B. Changes in behaviors of male C57BL/6J mice across adult life span and effects of dietary restriction. AGE 34, 1435–1452 (2012). https://doi.org/10.1007/s11357-011-9320-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-011-9320-7

Keywords

Navigation