Skip to main content
Log in

Classification and identification of pigmented cocci bacteria relevant to the soil environment via Raman spectroscopy

  • Alteration and element mobility at the microbe-mineral interface
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A soil habitat consists of a significant number of bacteria that cannot be cultivated by conventional means, thereby posing obvious difficulties in their classification and identification. This difficulty necessitates the need for advanced techniques wherein a well-compiled biomolecular database consisting of the already cultivable bacteria can be used as a reference in an attempt to link the noncultivable bacteria to their closest phylogenetic groups. Raman spectroscopy has been successfully applied to taxonomic studies of many systems like bacteria, fungi, and plants relying on spectral differences contributed by the variation in their overall biomolecular composition. However, these spectral differences can be obscured due to Raman signatures from photosensitive microbial pigments like carotenoids that show enormous variation in signal intensity hindering taxonomic investigations. In this study, we have applied laser-induced photobleaching to expel the carotenoid signatures from pigmented cocci bacteria. Using this method, we have investigated 12 species of pigmented bacteria abundant in soil habitats belonging to three genera mainly Micrococcus, Deinococcus, and Kocuria based on their Raman spectra with the assistance of a chemometric tool known as the radial kernel support vector machine (SVM). Our results demonstrate the potential of Raman spectroscopy as a minimally invasive taxonomic tool to identify pigmented cocci soil bacteria at a single-cell level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baranska M, Schulz H, Kruger H, Quilitzsch R (2005) Chemotaxonomy of aromatic plants of the genus Origanum via vibrational spectroscopy. Anal Bioanal Chem 381:1241–1247

    Article  CAS  Google Scholar 

  • Baranski R, Baranska M, Schulz H, Simon PW, Nothnagel T (2006) Single seed Raman measurements allow taxonomical discrimination of Apiaceae accessions collected in gene banks. Biopolymers 81:497–505

    Article  CAS  Google Scholar 

  • Bocklitz T, Walter A, Hartmann K, Rösch P, Popp J (2011) How to pre-process Raman spectra for reliable and stable models. Anal Chim Acta 704:47–56

    Article  CAS  Google Scholar 

  • Boser BE, Guyon IM, Vapnik V (1992) A training algorithm for optimal margin classifiers. Proc Fifth Ann Workshop Comput Learn Theory 144–152

  • Britton G (1995) Structure and properties of carotenoids in relation to function. FASEB 9:1551–1558

    CAS  Google Scholar 

  • Britton G, Liaaen Jensen S, Pfander H (2008) Carotenoids volume 4: natural functions. Springer, Germany

    Book  Google Scholar 

  • Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Disc 2(2):121–167

    Article  Google Scholar 

  • Chan JW et al (2006) Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells. Biophys J 90:648–656

    Article  CAS  Google Scholar 

  • Cheng WT, Liu MT, Liu HN, Lin SY (2005) Micro Raman spectroscopy used to identify and grade human skin pilomatrixoma. Microsc Res Tech 68:75–79

    Article  CAS  Google Scholar 

  • Collins AM et al (2011) Carotenoid distribution in Living cells of Haematococcus pluvialis (Chlorophyceae). PLoS One 6(9)

  • Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    Google Scholar 

  • Dochow S et al (2011) Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments. Lab Chip 11:1484–1490

    Article  CAS  Google Scholar 

  • Frank CJ, McCreecy RL, Redd DCB (1995) Raman spectroscopy of normal and diseased human breast tissues. Anal Chem 67:777–783

    Article  CAS  Google Scholar 

  • Harz M, Rösch P, Popp J (2009) Vibrational spectroscopy a powerful tool for the rapid identification of microbial cells at the single cell level. Cytometry A 75(2):104–13

    Article  CAS  Google Scholar 

  • Huang Z, McWilliams A, Lui M, McLean DI, Lam S, Zeng H (2003) Near-infrared Raman spectroscopy for optical diagnosis of lung cancer. Int J Cancer 107:1047–1052

    Article  CAS  Google Scholar 

  • Ji H-F (2010) Insight into the strong antioxidant activity of Deinoxanthin, a unique carotenoid in Deinococcus radiodurans. Int J Mol Sci 11:4506–4510

    Article  CAS  Google Scholar 

  • Janda JM, Abbott SL (2007) 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J Clin Microbiol 45:2761–2764

    Article  CAS  Google Scholar 

  • Janssen PH (2006) Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol 72:1719–1728

    Article  CAS  Google Scholar 

  • Jehlička J, Edwards HG, Oren A (2014) Raman spectroscopy of microbial pigments. Appl Environ Microbiol 80:3286–3295

    Article  Google Scholar 

  • Kim HY, Park HM, Lee CH (2012) Mass spectrometry-based chemotaxonomic classification of Penicillium species (P. echinulatum, P. expansum, P. solitum, and P. oxalicum) and its correlation with antioxidant activity. J Microbiol Methods 90:327–335

    Article  CAS  Google Scholar 

  • Kim M, Oh HC, Park SC, Chun J (2014) Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64:346–351

    Article  CAS  Google Scholar 

  • Klassen JL, Foght JM (2008) Differences in carotenoid composition among Hymenobacter and related strains support a tree like model of carotenoid evolution. Appl Environ Microbiol 74:2016–2024

    Article  CAS  Google Scholar 

  • Kloß S et al (2013) Culture independent Raman spectroscopic identification of urinary tract infection pathogens: a proof of principle study. Anal Chem 85:9610–9616

  • Kolijenovic S, Scut TB, Vincent A, Kros JM, Puppels GJ (2005) Detection of meningioma in dura mater by Raman spectroscopy. Anal Chem 77(24):7958–7965

    Article  Google Scholar 

  • Krafft C, Neudert L, Simat T, Salzer R (2005) Near infrared Raman spectra of human brain lipids. Spectrochim Acta A 61:1529–1535

    Article  Google Scholar 

  • Kusić D, Kampe B, Rösch P, Popp J (2014) Identification of water pathogens by Raman microspectroscopy. Water Res 48:179–189

  • Liaaen Jensen S, Andrewes AG (1972) Microbial carotenoids. Annu Rev Microbiol 26:225–248

    Article  CAS  Google Scholar 

  • Maquelin K et al (2009) Raman spectroscopic typing reveals the presence of carotenoids in Mycoplasma pneumonia. Microbiol Sgm 155:2068–2077

    Article  CAS  Google Scholar 

  • Meisel S, Stöckel S, Rösch P, Popp J (2014) Identification of meat associated pathogens via Raman microspectroscopy. Food Microbiol 38:36–43

    Article  CAS  Google Scholar 

  • Mignard S, Flandrois JP (2006) 16S rRNA sequencing in routine bacterial identification: a 30-month experiment. J Microbiol Methods 67:574–581

    Article  CAS  Google Scholar 

  • Movasaghi Z, Rehman S, Rehman IU (2007) Raman spectroscopy of biological tissues. Appl Spectrosc Rev 42:493–541

    Article  CAS  Google Scholar 

  • Naumann D (1998) Infrared and NIR Raman spectroscopy in medical microbiology. Proc SPIE 3257:245–257

    Article  CAS  Google Scholar 

  • Netzer R et al (2010) Biosynthetic pathway for γ-cyclic sarcinaxanthin in Micrococcus luteus :heterologous expression and evidence for diverse and multiple catalytic functions of C(50) carotenoid cyclises. J Bacteriol 192(21):5688–99

    Article  CAS  Google Scholar 

  • Notingher I, Green C, Dyer C (2004) Discrimination between ricin and sulphur mustard toxicity in vitro using Raman spectroscopy. J R Soc Interface 1:79–90

    Article  CAS  Google Scholar 

  • R Development core team (2008) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna

    Google Scholar 

  • Reddy GSN et al (2003) Kocuria polaris sp. nov., an orange-pigmented psychrophilic bacterium isolated from an Antarctic cyanobacterial mat sample. Int J Syst Evol Microbiol 53:183–187

    Article  CAS  Google Scholar 

  • Rinke C et al (2013) Insights into the phylogeny and coding potential of microbial dark matter. Nature 499:431–437

    Article  CAS  Google Scholar 

  • Rösch P et al (2005) Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: application to clean-room-relevant biological contaminations. Appl Environ Microbiol 71:1626–1637

    Article  Google Scholar 

  • Scholtes-Timmerman M, Willemse-Erix H, Schut TB, van Belkum A, Puppels G, Maquelin K (2009) A novel approach to correct variations in Raman spectra due to photo-bleachable cellular components. Analyst 134:387–393

    Article  CAS  Google Scholar 

  • Sigurdsson S, Philipsen PA, Hansen LK, Laesen L, Gniadecka M, Wulf HC (2004) Detection of skin cancer by classification of Raman spectra. IEEE Trans Biomed Eng 51(10):1784–93

    Article  Google Scholar 

  • Silge A, Schmacher W, Rösch P, da Costa Filho PA, Gerard C, Popp J (2014) Identification of water-conditioned Pseudomonas aeruginosa by Raman microspectroscopy on a single cell level. Syst Appl Microbiol 37:360–367

  • Silveira L Jr et al (2002) Correlation between near infrared Raman spectroscopy and the histopathological analysis of atheroscelerosis in human coronary arteries. Lasers Surg Med 30(4):290–7

    Article  Google Scholar 

  • Stewart EJ (2012) Growing unculturable bacteria. J Bacteriol 194:16

    Google Scholar 

  • Stöckel S, Meisel S, Elschner M, Melzer F, Rösch P and Popp J (2014) Raman spectroscopic detection and identification of Burkholderia mallei and Burkholderia pseudomallei in feedstuff. Anal Bioanal Chem:1-10

  • Stone N, Kendall C, Smith J, Crow P, Barr H (2004) Raman spectroscopy for identification of epithelial cancers. Faraday Discuss 126:141–157

    Article  CAS  Google Scholar 

  • Van Der Heijden MG, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  Google Scholar 

  • Pham VHT, Kim J (2012) Cultivation of unculturable soil bacteria. Trends Biotechnol 30:475–484

    Article  CAS  Google Scholar 

  • Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, van Sinderen D (2007) Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. MMBR 71:495–548

    Article  CAS  Google Scholar 

  • Walter A, Schumacher W, Bocklitz T, Reinicke M, Rösch P, Kothe E, Popp J (2011) From bulk to single-cell classification of the filamentous growing Streptomyces bacteria by means of Raman spectroscopy. Appl Spectrosc 65:1116–1125

    Article  CAS  Google Scholar 

  • Walter A et al (2010) Analysis of the cytochrome distribution via linear and nonlinear Raman spectroscopy. Analyst 135:908–917

    Article  CAS  Google Scholar 

  • Withnall R, Chowdhry BZ, Silver J, Edwards HG, de Oliveira LF (2003) Raman spectra of carotenoids in natural products. Spectrochim Acta A 59:2207–2212

    Article  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. PNAS 95:6578–6583

    Article  CAS  Google Scholar 

  • Xing YL, Bao JW, Cheng YJ, Shuang JL (2007) Micrococcus flavus sp. nov. isolated from activated sludge in a bioreactor. Int J Syst Evol Microbiol 57:66–69

    Article  Google Scholar 

  • Zhao GZ et al (2009) Micrococcus yunnanensis sp. nov., a novel actinobacterium isolated from surface-sterilized Polyspora axillaris roots. Int J Syst Evol Microbiol 59:2383–2387

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the German Research Foundation (DFG) under the grant GRK 1257/2: “Alteration and element mobility at the microbe-mineral interface.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Popp.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Kampe, B., Rösch, P. et al. Classification and identification of pigmented cocci bacteria relevant to the soil environment via Raman spectroscopy. Environ Sci Pollut Res 22, 19317–19325 (2015). https://doi.org/10.1007/s11356-015-4593-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4593-5

Keywords

Navigation