Skip to main content
Log in

Novel Microtensile Method for Monotonic and Cyclic Testing of Freestanding Copper Thin Films

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

This paper presents the results of new microtensile tests conducted to investigate the mechanical properties of submicron-thick freestanding copper films. The method, used in this study, allows the observation of materials response under uniaxial tensile loads with measurements of stress at strain rates up to 5.5 × 10−4/s. It also facilitates tension–tension fatigue experiments under a variety of mean stress conditions at cyclic loading frequencies to 20 Hz. The sample processes involve fabrication of a supporting frame with springs and alignment beams all made of electroplated nickel. Electroplating took place on top of a previously deposited sample rather than creating a structure by subtractive fabrication. Tensile sample loading is applied using a piezoelectric actuator. Load was measured using a capacitance gap sensor with a novel mechanical coupling to the sample. Tension–tension fatigue experiments were carried out with feedback to give load control. Fatigue tests were conducted on sputter-deposited 500 and 900 nm copper films with grain sizes ∼50 nm. Fatigue life reached 105 cycles at low mean load, which decreased with an increase in the mean load. The results indicate decreasing plasticity with increasing mean load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Miller SL, Rodgers MS, LaVigne G, Sniegowski JJ, Clews P, Tanner DM, Peterson KA (1998) Failure modes in surface micromachined MicroElectroMechanical actuators. Proceedings of the 36th Annual International Reliability Physics Symposium, pp. 17–25

  2. Barbosa N III, El-Deiry P, Vinci RP (2003) Monotonic testing and tension–tension fatigue testing of free-standing Al microtensile beams. Proceedings of the Materials Research Society Symposium on Thin Films—Stresses and Mechanical Properties X, pp. 423–428

  3. Vinci RP, Cornella G, Bravman JC (1999) Anelastic Effects in Freestanding Al Thin Films. Proceedings of the 5th International Workshop on Stress Induced Phenomena in Metallization, June, pp. 240–248

  4. Lee HJ, Cornella G, Bravman JC (2000) Stress relaxation of free-standing aluminum beams for microelectromechanical systems applications. Appl Phys Lett 7623:3415–3417. doi:10.1063/1.126664

    Article  Google Scholar 

  5. Nix WD (1989) Mechanical properties of tin films. Metall Trans A 20A:2217–2245

    Google Scholar 

  6. Thompson CV (1993) The yield stress of polycrystalline thin films. J Mater Res 82:237–238. doi:10.1557/JMR.1993.0237

    Article  Google Scholar 

  7. Yang Y, Imasogie BI, Allameh SM, Boyce B, Lian K, Lou K, Lou J, Soboyejo WO (2007) Mechanisms of fatigue in LIGA Ni MEMS thin films. Mater Sci Eng A 444:39–50. doi:10.1016/j.msea.2006.06.124

    Article  Google Scholar 

  8. Read DT, Dally JW (1993) Fatigue of microlithographically-patterned free-standing aluminum thin film under axial stresses. J Electron Packag 117:1–6. doi:10.1115/1.2792062

    Article  Google Scholar 

  9. Haque MA, Saif MTA (2002) In-situ tensile testing of nano-scale specimens in SEM and TEM. Exp Mech 421:123–128. doi:10.1007/BF02411059

    Article  Google Scholar 

  10. Rajagopalan J, Han JH, Saif MTA (2007) Plastic deformation recovery in freestanding nanocrystalline aluminum and gold thin films. Science 3155820:1831–1834. doi:10.1126/science.1137580

    Article  Google Scholar 

  11. Barbosa N, Keller RR, Read DT, Geiss RH, Vinci RP (2007) Comparison of electrical and microtensile evaluations of mechanical properties of an aluminum film. Metall Mater Trans A 3813:2160–2167. doi:10.1007/s11661-007-9112-y

    Article  Google Scholar 

  12. Lin MT, Tong CJ, Chiang CH (2007) Design and development of sub-micron scale specimens with electroplated structures for the microtensile testing of thin films. Microsyst Technol 1311:1559–1565. doi:10.1007/s00542-006-0345-2

    Article  Google Scholar 

  13. Haque MA, Saif MTA (2002) Application of MEMS force sensors for in situ mechanical characterization of nano-scale thin films in SEM and TEM. Sens Actuators A, Phys 97–98:239–245. doi:10.1016/S0924-4247(01)00861-5

    Article  Google Scholar 

  14. Espinosa HD, Zhu Y, Moldovan N (2007) Design and operation of a MEMS-based material testing system for nanomechanical characterization. J Microelectromech Syst 165:1219–1231. doi:10.1109/JMEMS.2007.905739

    Article  Google Scholar 

  15. Read DT (1998) Tension–tension fatigue of copper thin films. Int J Fatigue 203:203–209. doi:10.1016/S0142-1123(97)00080-7

    Article  Google Scholar 

  16. Sharpe WN Jr, Yuan B, Edwards RL (1997) New technique for measuring the mechanical properties of thin films. J Microelectromech Syst 63:193–199. doi:10.1109/84.623107

    Article  Google Scholar 

  17. Emery RD, Povirk GL (2003) Tensile behavior of free-standing gold films. Part I. Coarse-grained films. Acta Mater 51:2067–2078. doi:10.1016/S1359-6454(03)00006-5

    Article  Google Scholar 

  18. Emery RD, Povirk GL (2003) Tensile behavior of free-standing gold films. Part II. Fine-grained films. Acta Mater 51:2079–2087. doi:10.1016/S1359-6454(03)00007-7

    Article  Google Scholar 

  19. Kraft O, Schwaiger R, Wellner P (2001) Fatigue in thin films: lifetime and damage formation. Mater Sci Eng A 319–321:919–923. doi:10.1016/S0921-5093(01)00990-X

    Google Scholar 

  20. Lin MT, Tong CJ, Shiu KS (2008) Monotonic and fatigue testing of freestanding submicron thin beams application for MEMS. Microsyst Technol 147:1041–1048. doi:10.1007/s00542-007-0463-5

    Article  Google Scholar 

  21. Madou MJ (2002) Fundamentals of microfabrication: the science of miniaturization, 2nd edn. CRC, New York, p 351

    Google Scholar 

  22. Harsch S, Ehrfeld W, Maner A (1988) Untersuchungen zur Herstellung von Mikrostructuren grosser Strukturhohe durch Galvanoformung in Nickel-Sulfamatelek-trolyten, KfK, Report No. 4455

  23. Truong DV, Hirakata H, Kitamura T (2005) Effect of frequency on fatigue crack growth along interface between copper film and silicon substrate. Proceedings of the International Symposium on 7th Electronics Materials and Packaging, December, pp 61–66

  24. Zhang GP, Sun KH, Zhang B, Gong J, Sun C, Wang ZG (2008) Tensile and fatigue strength of ultrathin copper films. Mater Sci Eng A 483–484:387–390. doi:10.1016/j.msea.2007.02.132

    Google Scholar 

  25. Dieter GE (1988) Mechanical metallurgy. McGraw-Hill, New York

    Google Scholar 

  26. Mohamed G (2002) The MEMS handbook. CRC, Boca Raton

    MATH  Google Scholar 

  27. Davis JR (1998) Metals handbook (2nd edn), desk edition. ASM International, Materials Park, p 118

    Google Scholar 

  28. Keller RM, Baker SP, Arzt E (1998) Quantitative analysis of strengthening mechanisms in thin Cu films: effects of film thickness, grain size and passivation. J Mater Res 13:1307–1317. doi:10.1557/JMR.1998.0186

    Article  Google Scholar 

  29. Hommel M, Kraft O (2001) Deformation behavior of thin copper films on deformable substrates. Acta Mater 49:3935–3947. doi:10.1016/S1359-6454(01)00293-2

    Article  Google Scholar 

  30. Venkatraman R, Bravman JC (1992) Separation of film thickness and grain boundary strengthening effects in Al thin films on Si. J Mater Res 7:2040–2048. doi:10.1557/JMR.1992.2040

    Article  Google Scholar 

  31. Keller RM, Baker SP, Arzt E (1999) Stress–temperature behavior of unpassivated thin copper films. Acta Mater 47:415–426. doi:10.1016/S1359-6454(98)00387-5

    Article  Google Scholar 

  32. Doerner MF, Gardner DS, Nix WD (1986) Plastic properties of thin films on substrates as measured by submicron indentation hardness and substrate curvature techniques. J Mater Res 1:845–851. doi:10.1557/JMR.1986.0845

    Article  Google Scholar 

  33. Kuan TS, Murakami M (1982) Low temperature strain behavior of Pb thin films on a substrate. Metall Trans A 13:383–391. doi:10.1007/BF02643347

    Article  Google Scholar 

  34. Espinosa HD, Prorok BC, Peng B (2004) Plasticity size effects in free-standing submicron polycrystalline FCC-films subjected to pure tension. J Mech Phys Solids 52:667–689. doi:10.1016/j.jmps.2003.07.001

    Article  Google Scholar 

  35. Jamting K, Bell JM, Swain MV, Schwarzer N (1997) Investigation of the elastic modulus of thin films using simple biaxial bending techniques. Thin Solid Films 308–309:304–309. doi:10.1016/S0040-6090(97)00559-2

    Article  Google Scholar 

  36. Farhat ZN, Ding Y, Northwood DO, Alpas AT (1997) Nanoindentation and friction studies on Ti-based nanolaminated films. Surf Coat Technol 891–2:24–30. doi:10.1016/S0257-8972(96)02939-8

    Article  Google Scholar 

  37. Sanders PG, Eastman JA, Weertman JR (1997) Elastic and tensile behavior of nanocrystalline copper and palladium. Acta Mater 4510:4019–4025. doi:10.1016/S1359-6454(97)00092-X

    Article  Google Scholar 

  38. Legros M, Elliott BR, Rittner MN, Weertman JR, Hemker KJ (2000) Microsample tensile testing of nanocrystalline metals. Philos Mag A 804:1017–1026. doi:10.1080/01418610008212096

    Article  Google Scholar 

  39. Suresh S, Nieh TG, Choi BW (1999) Nano-indentation of copper thin films on silicon substrates. Scripta Materialia 419:951–957. doi:10.1016/S1359-6462(99)00245-6

    Article  Google Scholar 

  40. Huang H, Spaepen F (2000) Tensile testing of free-standing Cu, Ag and Al thin films and Ag/Cu multilayers. Acta Mater 4812:3261–3269. doi:10.1016/S1359-6454(00)00128-2

    Article  Google Scholar 

  41. Zhao JH, Du Y, Morgen M, Ho PS (2000) Simultaneous measurement of Young’s modulus, Poisson ratio, and coefficient of thermal expansion of thin films on substrates. J Appl Phys 873:1575–1578. doi:10.1063/1.372054

    Article  Google Scholar 

  42. Fang TH, Chang WJ (2003) Nanomechanical properties of copper thin films on different substrates using the nanoindentation technique. Microelectron Eng 65:231–238. doi:10.1016/S0167-9317(02)00885-7

    Article  Google Scholar 

  43. Soifer YM, Verdyan A, Kazakevichb M, Rabkin E (2005) Edge effect during nanoindentation of thin copper films. Mater Lett 5911:1434–1438. doi:10.1016/j.matlet.2004.08.043

    Article  Google Scholar 

  44. Hong SH, Kim KS, Kim YM, Hahn JH, Lee CS, Park JH (2005) Characterization of elastic moduli of Cu thin films using nanoindentation technique. Compos Sci Technol 659:1401–1408. doi:10.1016/j.compscitech.2004.12.010

    Article  Google Scholar 

  45. Khatibi G, Betzwar-Kotas A, Groger V, Weiss B (2005) A study of the mechanical and fatigue properties of metallic microwires. Fatigue Fract Eng Mater Struct 288:723–733. doi:10.1111/j.1460-2695.2005.00898.x

    Article  Google Scholar 

  46. Zhou ZM, Zhou Y, Yang CS, Chen JA, Ding W, Ding GF (2006) The evaluation of Young’s modulus and residual stress of copper films by microbridge testing. Sens Actuators A, Phys 1272:392–397. doi:10.1016/j.sna.2005.12.036

    Article  Google Scholar 

  47. Wei X, Lee D, Shim S, Chen X, Kysar JW (2007) Plane-strain bulge test for nanocrystalline copper thin films. Scr Mater 576:541–544. doi:10.1016/j.scriptamat.2007.05.012

    Article  Google Scholar 

  48. Schwaiger R, Kraft O (2003) Size effects in the fatigue behavior of thin Ag films. Acta Mater 51:195–206. doi:10.1016/S1359-6454(02)00391-9

    Article  Google Scholar 

  49. Basquin OH (1910) The exponential law of endurance test. Proc ASTM 10:625–630

    Google Scholar 

  50. Hong S, Weil R (1996) Low cycle fatigue of thin copper foils. Thin Solid Films 283:175–181. doi:10.1016/0040-6090(95)08225-5

    Article  Google Scholar 

  51. Park JH, An JH, Kim YJ, Huh YH, Lee HJ (2008) Tensile and high cycle fatigue test of copper thin film. Mat-wiss u Werkstofftech 392:187–192. doi:10.1002/mawe.200700262

    Article  Google Scholar 

  52. Hyun S, Brown WL, Vinci RP (2003) Thickness and temperature dependence of stress relaxation in nanoscale aluminum films. Appl Phys Lett 8321:4411–4413. doi:10.1063/1.1629381

    Article  Google Scholar 

  53. Hyun S, Hooghan TK, Brown WL, Vinci RP (2005) Linear viscoelasticity in aluminum thin films. Appl Phys Lett 87061902:1–3

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Professor Walter L. Brown of Lehigh University for his kind advice. This work was supported by Taiwan National Science Council; grant number NSC94-2218-E-005-019 and also supported in part by the Ministry of Education, Taiwan under the ATU plan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.-T. Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, MT., Tong, CJ. & Shiu, KS. Novel Microtensile Method for Monotonic and Cyclic Testing of Freestanding Copper Thin Films. Exp Mech 50, 55–64 (2010). https://doi.org/10.1007/s11340-009-9221-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-009-9221-1

Keywords

Navigation