Skip to main content

Advertisement

Log in

Experimental Investigation of Strain Rate Dependence of Nanocrystalline Pt Films

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

A new microscale uniaxial tension experimental method was developed to investigate the strain rate dependent mechanical behavior of freestanding metallic thin films for MEMS. The method allows for highly repeatable mechanical testing of thin films for over eight orders of magnitude of strain rate. Its repeatability stems from the direct and full-field displacement measurements obtained from optical images with at least 25 nm displacement resolution. The method is demonstrated with micron-scale, 400-nm thick, freestanding nanocrystalline Pt specimens, with 25 nm grain size. The experiments were conducted in situ under an optical microscope, equipped with a digital high-speed camera, in the nominal strain rate range 10−6–101 s−1. Full field displacements were computed by digital image correlation using a random speckle pattern generated onto the freestanding specimens. The elastic modulus of Pt, E = 182 ± 8 GPa, derived from uniaxial stress vs. strain curves, was independent of strain rate, while its Poisson’s ratio was v = 0.41 ± 0.01. Although the nanocrystalline Pt films had the elastic properties of bulk Pt, their inelastic property values were much higher than bulk and were rate-sensitive over the range of loading rates. For example, the elastic limit increased by more than 110% with increasing strain rate, and was 2–5 times higher than bulk Pt reaching 1.37 GPa at 101 s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Polcawich RG, Pulskamp JS, Judy D, Ranade P, Trolier-McKinstry S, Dubey M (2007). Surface micromachined microelectromechanical ohmic series switch using thin film piezoelectric actuators. IEEE Trans Microwave Theor Techn 55:2642–2654. doi:10.1109/TMTT.2007.910072.

    Article  Google Scholar 

  2. Muralt P, Baborowski J, Lederman N (2002) Piezoelectric micro-electro-mechanical systems with PbZrxT1-xO3 thin films: integration and application issues. In: Setter N (ed) Piezoelectric materials in devices. Ceramics Laboratory EPFL, Lausanne, Switzerland, pp 231–260.

    Google Scholar 

  3. Schwaiger R, Moser B, Dao M, Chollacoop N, Suresh S (2003). Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Mater 51:5159–5172. doi:10.1016/S1359-6454(03)00365-3.

    Article  Google Scholar 

  4. Jiang Z, Liu X, Li G, Jiang Q, Lian J (2006). Strain rate sensitivity of a nanocrystalline Cu synthesized by electric brush plating. Appl Phys Lett 88:143115. doi:10.1063/1.2193467.

    Article  Google Scholar 

  5. Gianola DS, Warner DH, Molinari JF, Hemker KJ (2006). Increased strain rate sensitivity due to stress-coupled grain growth in nanocrystalline Al. Scr Mater 55:649–652. doi:10.1016/j.scriptamat.2006.06.002.

    Article  Google Scholar 

  6. Emery RD, Povirk GL (2002). Tensile behavior of free-standing gold films, part I. coarse-grained films. Acta Mater 51:2067–2078. doi:10.1016/S1359-6454(03)00006-5.

    Article  Google Scholar 

  7. Emery RD, Povirk GL (2002). Tensile behavior of free-standing gold films, part II. fine-grained films. Acta Mater 51:2079–2087. doi:10.1016/S1359-6454(03)00007-7.

    Article  Google Scholar 

  8. Chasiotis I, Bateson C, Timpano K, McCarty A, Barker NS, Stanec J (2007). Strain rate effects on the mechanical behavior of nanocrystalline Au films. Thin Solid Films 515:3183–3189. doi:10.1016/j.tsf.2006.01.033.

    Article  Google Scholar 

  9. Li Y, Cima MJ (2004) Bulge test on free standing gold thin films. Proceedings of Materials Research Society Symposium 795:437–442.

    Google Scholar 

  10. Kovalchick C, Sharpe WN Jr (2006). Microsample tensile testing of platinum alloys. Exp Tech 305:38–41. doi:10.1111/j.1747-1567.2006.00084.x.

    Article  Google Scholar 

  11. Chasiotis I, Knauss WG (2002). A new microtensile tester for the study of MEMS materials with the aid of atomic force microscopy. Exp Mech 421:51–57. doi:10.1007/BF02411051.

    Article  Google Scholar 

  12. Cho SW, Chasiotis I (2007). Elastic properties and representative volume element of polycrystalline silicon for MEMS. Exp Mech 471:37–49. doi:10.1007/s11340-006-0405-7.

    Article  Google Scholar 

  13. Sutton MA, Li N, Garcia D, Cornille N, Orteu JJ, McNeill SR, Schreier HW, Li X, Reynolds AP (2007). Scanning electron microscopy for quantitative small and large deformation measurements part II: experimental validation for magnifications from 200 to 10,000. Exp Mech 47:789–804. doi:10.1007/s11340-007-9041-0.

    Article  Google Scholar 

  14. Wang L, Prorok BC (2008). Characterization of the strain rate dependent behavior of nanocrystalline gold films. J Mater Res 231:55–65. doi:10.1557/jmr.2008.0032.

    Article  Google Scholar 

  15. Jackson KM, Lang C (2006). Mechanical properties data for Pt-5 wt.% Cu and Pt-5 wt.% Ru alloys. Platin Met Rev 501:15–19. doi:10.1595/147106705X93359.

    Article  Google Scholar 

  16. Hyun S, Kraft O, Vinci RP (2004). Mechanical behavior of Pt and Pt–Ru solid solution alloy thin films. Acta Mater 5214:4199–4211. doi:10.1016/j.actamat.2004.05.034.

    Article  Google Scholar 

  17. Salvadori MC, Brown IG, Vaz AR, Melo LL, Cattani M (2003) Measurement of the elastic modulus of nanostructured gold and platinum thin films. Phys Rev B: Condens Matter Mater Phys 67153404:1–4.

    Google Scholar 

  18. Chandrahalim H, Bhave S, Polcawich R, Pulskamp J, Judy D, Kaul R, Dubey M (2008). Influence of silicon on quality factor, motional impedance and tuning range of PZT-transduced resonators. 2008 Solid State Sensor, Actuators, and Microsystems Workshop, Hilton Head Island, SC, pp 360–363

  19. Peters WH, Ranson WF (1982) Digital imaging techniques in experimental stress analysis. Opt Eng 213:427–431.

    Google Scholar 

  20. Sutton MA, Wolters WJ, Peters WH, Ranson WF, McNeill SR (1983). Determination of displacements using an improved digital image correlation method. Image Vis Comput 13:133–139. doi:10.1016/0262-8856(83)90064-1.

    Article  Google Scholar 

  21. Gonzalez J, Knauss WG (1998). Strain inhomogeneity and discontinuous crack growth in a particulate composite. J Mech Phys Solids 4610:1981–1995. doi:10.1016/S0022-5096(98)00037-4.

    Article  MATH  Google Scholar 

  22. Abanto-Bueno J, Lambros J (2006). An experimental study of mixed mode crack initiation and growth in functionally graded materials. Exp Mech 462:179–196. doi:10.1007/s11340-006-6416-6.

    Article  Google Scholar 

  23. Jonnalagadda K, Chasiotis I, Lambros J, Polcawich R, Pulskamp J, Dubey M (2007) Strain-rate dependent Mechanical Behavior of Au and Pt Thin Films,” Proc. of society for engineering sciences

  24. Knauss WG, Chasiotis I, Huang Y (2003). Mechanical measurements at the micron and nanometer scales. Mech Mater 353–6:217–231. doi:10.1016/S0167-6636(02)00271-5.

    Article  Google Scholar 

  25. (1963) Reference data, Physical properties of the platinum metals. Platin Met Rev 7(4):147

  26. Darling AS (1966) The elastic and plastic properties of the platinum metals. Platin Met Rev 101:14–19.

    Google Scholar 

  27. Sharpe WN Jr, Yuan B, Edwards RL (1997). A new technique for measuring the mechanical properties of thin films. IEEE ASME J Microelectromech Syst 63:193–199. doi:10.1109/84.623107.

    Article  Google Scholar 

  28. Kumar KS, Van Swygenhoven H, Suresh S (2003). Mechanical behavior of nanocrystalline metals and alloys. Acta Mater 51:5743–5774. doi:10.1016/j.actamat.2003.08.032.

    Article  Google Scholar 

  29. Jiang Z, Liu X, Li G, Jiang Q, Lian J (2006). Strain rate sensitivity of a nanocrystalline Cu synthesized by electric brush plating. Appl Phys Lett 88:143115. doi:10.1063/1.2193467.

    Article  Google Scholar 

  30. Hertzberg RW (1976) Deformation and fracture mechanics of engineering materials. Wiley, New York.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support by the Army Research Office (ARO) under the Grant W911NF-05-1-0063 with Dr. Bruce LaMattina as the program manager, and by the National Science Foundation under Grant CMS 0555787. Furthermore, the authors would like thank Mr. William Wheeler for assisting with the speckle pattern apparatus. The authors also wish to thank Mr. Joel Martin (ARL) and Prashant Ranade (General Technical Services) for their assistance in the fabrication of the tensile specimens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Jonnalagadda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jonnalagadda, K.N., Chasiotis, I., Yagnamurthy, S. et al. Experimental Investigation of Strain Rate Dependence of Nanocrystalline Pt Films. Exp Mech 50, 25–35 (2010). https://doi.org/10.1007/s11340-008-9212-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-008-9212-7

Keywords

Navigation