Skip to main content

Advertisement

Log in

Nucleotide homeostasis and purinergic nociceptive signaling in rat meninges in migraine-like conditions

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Extracellular ATP is suspected to contribute to migraine pain but regulatory mechanisms controlling pro-nociceptive purinergic mechanisms in the meninges remain unknown. We studied the peculiarities of metabolic and signaling pathways of ATP and its downstream metabolites in rat meninges and in cultured trigeminal cells exposed to the migraine mediator calcitonin gene-related peptide (CGRP). Under resting conditions, meningeal ATP and ADP remained at low nanomolar levels, whereas extracellular AMP and adenosine concentrations were one-two orders higher. CGRP increased ATP and ADP levels in meninges and trigeminal cultures and reduced adenosine concentration in trigeminal cells. Degradation rates for exogenous nucleotides remained similar in control and CGRP-treated meninges, indicating that CGRP triggers nucleotide release without affecting nucleotide-inactivating pathways. Lead nitrate-based enzyme histochemistry of whole mount meninges revealed the presence of high ATPase, ADPase, and AMPase activities, primarily localized in the medial meningeal artery. ATP and ADP induced large intracellular Ca2+ transients both in neurons and in glial cells whereas AMP and adenosine were ineffective. In trigeminal glia, ATP partially operated via P2X7 receptors. ATP, but not other nucleotides, activated nociceptive spikes in meningeal trigeminal nerve fibers providing a rationale for high degradation rate of pro-nociceptive ATP. Pro-nociceptive effect of ATP in meningeal nerves was reproduced by α,β-meATP operating via P2X3 receptors. Collectively, extracellular ATP, which level is controlled by CGRP, can persistently activate trigeminal nerves in meninges which considered as the origin site of migraine headache. These data are consistent with the purinergic hypothesis of migraine pain and suggest new targets against trigeminal pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Moskowitz MA (1993) Neurogenic inflammation in the pathophysiology and treatment of migraine. Neurology 43:S16–S20

    CAS  PubMed  Google Scholar 

  2. Olesen J, Burstein R, Ashina M, Tfelt-Hansen P (2009) Origin of pain in migraine: evidence for peripheral sensitisation. Lancet Neurol 8:679–690. doi:10.1016/S1474-4422(09)70090-0

    Article  PubMed  Google Scholar 

  3. Levy D (2012) Endogenous mechanisms underlying the activation and sensitization of meningeal nociceptors: the role of immuno-vascular interactions and cortical spreading depression. Curr Pain Headache Rep 16:270–277. doi:10.1007/s11916-012-0255-1

    Article  PubMed  Google Scholar 

  4. Zakharov A, Vitale C, Kilinc E et al (2015) Hunting for origins of migraine pain: cluster analysis of spontaneous and capsaicin-induced firing in meningeal trigeminal nerve fibers. Front Cell Neurosci. doi:10.3389/fncel.2015.00287

    PubMed  PubMed Central  Google Scholar 

  5. Burnstock G (1981) Pathophysiology of migraine: a new hypothesis. Lancet 317:1397–1399. doi:10.1016/S0140-6736(81)92572-1

    Article  Google Scholar 

  6. Burnstock G, Ralevic V (2014) Purinergic signaling and blood vessels in health and disease. Pharmacol Rev 66:102–192. doi:10.1124/pr.113.008029

    Article  PubMed  Google Scholar 

  7. Fabbro A, Skorinkin A, Grandolfo M et al (2004) Quantal release of ATP from clusters of PC12 cells. J Physiol 560:505–517. doi:10.1113/jphysiol.2004.068924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pangrsic T, Potokar M, Stenovec M et al (2007) Exocytotic release of ATP from cultured astrocytes. J Biol Chem 282:28749–28758. doi:10.1074/jbc.M700290200

    Article  CAS  PubMed  Google Scholar 

  9. Burnstock G, Krügel U, Abbracchio MP, Illes P (2011) Purinergic signalling: from normal behaviour to pathological brain function. Prog Neurobiol 95:229–274. doi:10.1016/j.pneurobio.2011.08.006

    Article  CAS  PubMed  Google Scholar 

  10. Karatas H, Erdener SE, Gursoy-Ozdemir Y et al (2013) Spreading depression triggers headache by activating neuronal Panx1 channels. Science 339:1092–1095. doi:10.1126/science.1231897

    Article  CAS  PubMed  Google Scholar 

  11. Yegutkin GG (2008) Nucleotide- and nucleoside-converting ectoenzymes: important modulators of purinergic signalling cascade. Biochim Biophys Acta 1783:673–694. doi:10.1016/j.bbamcr.2008.01.024

    Article  CAS  PubMed  Google Scholar 

  12. Zimmermann H, Zebisch M, Sträter N (2012) Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 8:437–502. doi:10.1007/s11302-012-9309-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yegutkin GG (2014) Enzymes involved in metabolism of extracellular nucleotides and nucleosides: functional implications and measurement of activities. Crit Rev Biochem Mol Biol 49:473–497. doi:10.3109/10409238.2014.953627

    Article  CAS  PubMed  Google Scholar 

  14. Goadsby PJ, Hoskin KL, Storer RJ et al (2002) Adenosine A1 receptor agonists inhibit trigeminovascular nociceptive transmission. Brain 125:1392–1401

    Article  CAS  PubMed  Google Scholar 

  15. Zylka MJ, Sowa NA, Taylor-Blake B et al (2008) Prostatic acid phosphatase is an ectonucleotidase and suppresses pain by generating adenosine. Neuron 60:111–122. doi:10.1016/j.neuron.2008.08.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nair A, Simonetti M, Birsa N et al (2010) Familial hemiplegic migraine Ca(v)2.1 channel mutation R192Q enhances ATP-gated P2X3 receptor activity of mouse sensory ganglion neurons mediating trigeminal pain. Mol Pain 6:48. doi:10.1186/1744-8069-6-48

    Article  PubMed  PubMed Central  Google Scholar 

  17. Deboer T, van Diepen HC, Ferrari MD et al (2013) Reduced sleep and low adenosinergic sensitivity in cacna1a R192Q mutant mice. Sleep 36:127–136. doi:10.5665/sleep.2316

    PubMed  Google Scholar 

  18. Giniatullin R, Nistri A (2013) Desensitization properties of P2X3 receptors shaping pain signaling. Front Cell Neurosci 7:245. doi:10.3389/fncel.2013.00245

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chizh BA, Illes P (2001) P2X receptors and nociception. Pharmacol Rev 53:553–568

    CAS  PubMed  Google Scholar 

  20. Wirkner K, Sperlagh B, Illes P (2007) P2X3 receptor involvement in pain states. Mol Neurobiol 36:165–183. doi:10.1007/s12035-007-0033-y

    Article  CAS  PubMed  Google Scholar 

  21. Fabbretti E, D’Arco M, Fabbro A et al (2006) Delayed upregulation of ATP P2X3 receptors of trigeminal sensory neurons by calcitonin gene-related peptide. J Neurosci 26:6163–6171. doi:10.1523/JNEUROSCI.0647-06.2006

    Article  CAS  PubMed  Google Scholar 

  22. Simonetti M, Giniatullin R, Fabbretti E (2008) Mechanisms mediating the enhanced gene transcription of P2X3 receptor by calcitonin gene-related peptide in trigeminal sensory neurons. J Biol Chem 283:18743–18752. doi:10.1074/jbc.M800296200

    Article  CAS  PubMed  Google Scholar 

  23. Giniatullin R, Nistri A, Fabbretti E (2008) Molecular mechanisms of sensitization of pain-transducing P2X3 receptors by the migraine mediators CGRP and NGF. Mol Neurobiol 37:83–90. doi:10.1007/s12035-008-8020-5

    Article  CAS  PubMed  Google Scholar 

  24. Zhang X, Chen Y, Wang C, Huang L-YM (2007) Neuronal somatic ATP release triggers neuron-satellite glial cell communication in dorsal root ganglia. Proc Natl Acad Sci U S A 104:9864–9869. doi:10.1073/pnas.0611048104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Helenius M, Jalkanen S, Yegutkin G (2012) Enzyme-coupled assays for simultaneous detection of nanomolar ATP, ADP, AMP, adenosine, inosine and pyrophosphate concentrations in extracellular fluids. Biochim Biophys Acta 1823:1967–1975. doi:10.1016/j.bbamcr.2012.08.001

    Article  CAS  PubMed  Google Scholar 

  26. Schueler M, Messlinger K, Dux M et al (2013) Extracranial projections of meningeal afferents and their impact on meningeal nociception and headache. Pain 154:1622–1631. doi:10.1016/j.pain.2013.04.040

    Article  PubMed  Google Scholar 

  27. Ceruti S, Fumagalli M, Villa G et al (2008) Purinoceptor-mediated calcium signaling in primary neuron-glia trigeminal cultures. Cell Calcium 43:576–590. doi:10.1016/j.ceca.2007.10.003

    Article  CAS  PubMed  Google Scholar 

  28. Mercier N, Kiviniemi TO, Saraste A et al (2012) Impaired ATP-induced coronary blood flow and diminished aortic NTPDase activity precede lesion formation in apolipoprotein E-deficient mice. Am J Pathol 180:419–428. doi:10.1016/j.ajpath.2011.10.002

    Article  CAS  PubMed  Google Scholar 

  29. Shatillo A, Koroleva K, Giniatullina R et al (2013) Cortical spreading depression induces oxidative stress in the trigeminal nociceptive system. Neuroscience 253:341–349. doi:10.1016/j.neuroscience.2013.09.002

    Article  CAS  PubMed  Google Scholar 

  30. Quiroga RQ, Nadasdy Z, Ben-Shaul Y (2004) Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural Comput 16:1661–1687. doi:10.1162/089976604774201631

    Article  PubMed  Google Scholar 

  31. Simonetti M, Fabbro A, D’Arco M et al (2006) Comparison of P2X and TRPV1 receptors in ganglia or primary culture of trigeminal neurons and their modulation by NGF or serotonin. Mol Pain 2:11. doi:10.1186/1744-8069-2-11

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jindrichova M, Khafizov K, Skorinkin A et al (2011) Highly conserved tyrosine 37 stabilizes desensitized states and restricts calcium permeability of ATP-gated P2X3 receptor. J Neurochem 119:676–685. doi:10.1111/j.1471-4159.2011.07463.x

    Article  CAS  PubMed  Google Scholar 

  33. Olesen J, Diener H-C, Husstedt IW et al (2004) Calcitonin gene-related peptide receptor antagonist BIBN 4096 BS for the acute treatment of migraine. N Engl J Med 350:1104–1110. doi:10.1056/NEJMoa030505

    Article  CAS  PubMed  Google Scholar 

  34. Kawaguchi A, Sato M, Kimura M et al (2015) Expression and function of purinergic P2Y12 receptors in rat trigeminal ganglion neurons. Neurosci Res 98:17–27. doi:10.1016/j.neures.2015.04.008

    Article  CAS  PubMed  Google Scholar 

  35. Ceruti S, Villa G, Fumagalli M et al (2011) Calcitonin gene-related peptide-mediated enhancement of purinergic neuron/glia communication by the algogenic factor bradykinin in mouse trigeminal ganglia from wild-type and R192Q Cav2.1 knock-in mice: implications for basic mechanisms of migraine pain. J Neurosci 31:3638–3649. doi:10.1523/JNEUROSCI.6440-10.2011

    Article  CAS  PubMed  Google Scholar 

  36. Thalakoti S, Patil VV, Damodaram S et al (2007) Neuron-glia signaling in trigeminal ganglion: implications for migraine pathology. Headache 47:1008–1023. doi:10.1111/j.1526-4610.2007.00854.x, discussion 24–5

    Article  PubMed  PubMed Central  Google Scholar 

  37. Messlinger K (2009) Migraine: where and how does the pain originate? Exp brain Res 196:179–193. doi:10.1007/s00221-009-1756-y

    Article  PubMed  Google Scholar 

  38. Abushik PA, Niittykoski M, Giniatullina R et al (2014) The role of NMDA and mGluR5 receptors in calcium mobilization and neurotoxicity of homocysteine in trigeminal and cortical neurons and glial cells. J Neurochem 129:264–274. doi:10.1111/jnc.12615

    Article  CAS  PubMed  Google Scholar 

  39. Oliveira JF, Riedel T, Leichsenring A et al (2011) Rodent cortical astroglia express in situ functional P2X7 receptors sensing pathologically high ATP concentrations. Cereb Cortex 21:806–820. doi:10.1093/cercor/bhq154

    Article  PubMed  Google Scholar 

  40. Magni G, Merli D, Verderio C et al (2015) P2Y2 receptor antagonists as anti-allodynic agents in acute and sub-chronic trigeminal sensitization: role of satellite glial cells. Glia 63:1256–1269. doi:10.1002/glia.22819

    Article  PubMed  Google Scholar 

  41. Rassendren F, Buell GN, Virginio C et al (1997) The permeabilizing ATP receptor, P2X7. Cloning and expression of a human cDNA. J Biol Chem 272:5482–5486

    Article  CAS  PubMed  Google Scholar 

  42. Magni G, Ceruti S (2013) P2Y purinergic receptors: new targets for analgesic and antimigraine drugs. Biochem Pharmacol 85:466–477. doi:10.1016/j.bcp.2012.10.027

    Article  CAS  PubMed  Google Scholar 

  43. Aspelund A, Antila S, Proulx ST et al (2015) A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med 212:991–999. doi:10.1084/jem.20142290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Louveau A, Smirnov I, Keyes TJ et al (2015) Structural and functional features of central nervous system lymphatic vessels. Nature 523:337–341. doi:10.1038/nature14432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Staikopoulos V, Sessle BJ, Furness JB, Jennings EA (2007) Localization of P2X2 and P2X3 receptors in rat trigeminal ganglion neurons. Neuroscience 144:208–216. doi:10.1016/j.neuroscience.2006.09.035

    Article  CAS  PubMed  Google Scholar 

  46. Di Angelantonio S, Giniatullin R, Costa V et al (2003) Modulation of neuronal nicotinic receptor function by the neuropeptides CGRP and substance P on autonomic nerve cells. Br J Pharmacol 139:1061–1073. doi:10.1038/sj.bjp.0705337

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hautaniemi T, Petrenko N, Skorinkin A, Giniatullin R (2012) The inhibitory action of the antimigraine nonsteroidal anti-inflammatory drug naproxen on P2X3 receptor-mediated responses in rat trigeminal neurons. Neuroscience 209:32–38. doi:10.1016/j.neuroscience.2012.02.023

    Article  CAS  PubMed  Google Scholar 

  48. Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492

    CAS  PubMed  Google Scholar 

  49. Lalo U, Palygin O, Rasooli-Nejad S et al (2014) Exocytosis of ATP from astrocytes modulates phasic and tonic inhibition in the neocortex. PLoS Biol 12, e1001747. doi:10.1371/journal.pbio.1001747

    Article  PubMed  PubMed Central  Google Scholar 

  50. Gurden MF, Coates J, Ellis F et al (1993) Functional characterization of three adenosine receptor types. Br J Pharmacol 109:693–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nascimento FP, Macedo-Júnior SJ, Pamplona FA et al (2015) Adenosine A1 receptor-dependent antinociception induced by inosine in mice: pharmacological, genetic and biochemical aspects. Mol Neurobiol 51:1368–1378. doi:10.1007/s12035-014-8815-5

    Article  CAS  PubMed  Google Scholar 

  52. Goadsby PJ, Lipton RB, Ferrari MD (2002) Migraine—current understanding and treatment. N Engl J Med 346:257–270. doi:10.1056/NEJMra010917

    Article  CAS  PubMed  Google Scholar 

  53. Burnstock G (1989) The role of adenosine triphosphate in migraine. Biomed Pharmacother 43:727–736

    Article  CAS  PubMed  Google Scholar 

  54. Messlinger K, Fischer MJM, Lennerz JK (2011) Neuropeptide effects in the trigeminal system: pathophysiology and clinical relevance in migraine. Keio J Med 60:82–89

    Article  CAS  PubMed  Google Scholar 

  55. Rosa AC, Fantozzi R (2013) The role of histamine in neurogenic inflammation. Br J Pharmacol 170:38–45. doi:10.1111/bph.12266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Brain SD, Hughes SR, Cambridge H, O’Driscoll G (1993) The contribution of calcitonin gene-related peptide (CGRP) to neurogenic vasodilator responses. Agents Actions 38 Spec No:C19–21.

  57. Levy D, Burstein R, Strassman AM (2005) Calcitonin gene-related peptide does not excite or sensitize meningeal nociceptors: implications for the pathophysiology of migraine. Ann Neurol 58:698–705. doi:10.1002/ana.20619

    Article  CAS  PubMed  Google Scholar 

  58. Sokolova E, Skorinkin A, Fabbretti E et al (2004) Agonist-dependence of recovery from desensitization of P2X(3) receptors provides a novel and sensitive approach for their rapid up or downregulation. Br J Pharmacol 141:1048–1058. doi:10.1038/sj.bjp.0705701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This project was supported by the Finnish Academy (grant 277442).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashid Giniatullin.

Ethics declarations

The animal treating procedures were approved by the Committee for the Welfare of Laboratory Animals of the University of Eastern Finland and the Provincial Government of Kuopio and experiments conducted in the accordance with the guidelines of the European Community Council (Directives 86/609/EEC). All efforts were made to minimize the number of animals used and their suffering.

Conflict of interest

The authors state that there is no conflict of interest and that the research was conducted in the absence of any commercial or financial relationships.

Additional information

Gennady G. Yegutkin and Cindy Guerrero-Toro contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yegutkin, G.G., Guerrero-Toro, C., Kilinc, E. et al. Nucleotide homeostasis and purinergic nociceptive signaling in rat meninges in migraine-like conditions. Purinergic Signalling 12, 561–574 (2016). https://doi.org/10.1007/s11302-016-9521-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-016-9521-8

Keywords

Navigation