Skip to main content
Log in

P2 receptors and platelet function

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Following vessel wall injury, platelets adhere to the exposed subendothelium, become activated and release mediators such as TXA2 and nucleotides stored at very high concentration in the so-called dense granules. Released nucleotides and other soluble agents act in a positive feedback mechanism to cause further platelet activation and amplify platelet responses induced by agents such as thrombin or collagen. Adenine nucleotides act on platelets through three distinct P2 receptors: two are G protein-coupled ADP receptors, namely the P2Y1 and P2Y12 receptor subtypes, while the P2X1 receptor ligand-gated cation channel is activated by ATP. The P2Y1 receptor initiates platelet aggregation but is not sufficient for a full platelet aggregation in response to ADP, while the P2Y12 receptor is responsible for completion of the aggregation to ADP. The latter receptor, the molecular target of the antithrombotic drugs clopidogrel, prasugrel and ticagrelor, is responsible for most of the potentiating effects of ADP when platelets are stimulated by agents such as thrombin, collagen or immune complexes. The P2X1 receptor is involved in platelet shape change and in activation by collagen under shear conditions. Each of these receptors is coupled to specific signal transduction pathways in response to ADP or ATP and is differentially involved in all the sequential events involved in platelet function and haemostasis. As such, they represent potential targets for antithrombotic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mackman N (2008) Triggers, targets and treatments for thrombosis. Nature 451(7181):914–918

    Article  PubMed  CAS  Google Scholar 

  2. Jennings LK (2009) Mechanisms of platelet activation: need for new strategies to protect against platelet-mediated atherothrombosis. Thromb Haemost 102(2):248–257. doi:10.1160/TH09-03-0192

    PubMed  CAS  Google Scholar 

  3. Jain S, Harris J, Ware J (2010) Platelets: linking hemostasis and cancer. Arterioscler Thromb Vasc Biol 30(12):2362–2367. doi:10.1161/ATVBAHA.110.207514

    Article  PubMed  CAS  Google Scholar 

  4. Gawaz M, Langer H, May AE (2005) Platelets in inflammation and atherogenesis. J Clin Invest 115(12):3378–3384

    Article  PubMed  CAS  Google Scholar 

  5. O'Sullivan BP, Linden MD, Frelinger AL 3rd, Barnard MR, Spencer-Manzon M, Morris JE, Salem RO, Laposata M, Michelson AD (2005) Platelet activation in cystic fibrosis. Blood 105(12):4635–4641. doi:10.1182/blood-2004-06-2098

    Article  PubMed  CAS  Google Scholar 

  6. Boilard E, Nigrovic PA, Larabee K, Watts GF, Coblyn JS, Weinblatt ME, Massarotti EM, Remold-O'Donnell E, Farndale RW, Ware J, Lee DM (2010) Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science 327(5965):580–583. doi:10.1126/science.1181928

    Article  PubMed  CAS  Google Scholar 

  7. Ross R, Glomset JA (1973) Atherosclerosis and the arterial smooth muscle cell: proliferation of smooth muscle is a key event in the genesis of the lesions of atherosclerosis. Science 180(93):1332–1339

    Article  PubMed  CAS  Google Scholar 

  8. Burnstock G (2008) Dual control of vascular tone and remodelling by ATP released from nerves and endothelial cells. Pharmacol Rep 60(1):12–20

    PubMed  CAS  Google Scholar 

  9. Born GV (1985) Adenosine diphosphate as a mediator of platelet aggregation in vivo: an editorial view. Circulation 72(4):741–746

    Article  PubMed  CAS  Google Scholar 

  10. Mustard JF, Perry DW, Kinlough-Rathbone RL, Packham MA (1975) Factors responsible for ADP-induced release reaction of human platelets. Am J Physiol 228(6):1757–1765

    PubMed  CAS  Google Scholar 

  11. Jones S, Evans RJ, Mahaut-Smith MP (2011) Extracellular Ca(2+) modulates ADP-evoked aggregation through altered agonist degradation: implications for conditions used to study P2Y receptor activation. Br J Haematol 153(1):83–91. doi:10.1111/j.1365-2141.2010.08499.x

    Article  PubMed  CAS  Google Scholar 

  12. Gachet C (2001) ADP receptors of platelets and their inhibition. Thromb Haemost 86(1):222–232

    PubMed  CAS  Google Scholar 

  13. Rolf MG, Brearley CA, Mahaut-Smith MP (2001) Platelet shape change evoked by selective activation of P2X1 purinoceptors with alpha, beta-methylene ATP. Thromb Haemost 85(2):303–308

    PubMed  CAS  Google Scholar 

  14. Mahaut-Smith MP, Tolhurst G, Evans RJ (2004) Emerging roles for P2X1 receptors in platelet activation. Platelets 15(3):131–144

    Article  PubMed  CAS  Google Scholar 

  15. Gordon JL (1986) Extracellular ATP: effects, sources and fate. Biochem J 233(2):309–319

    PubMed  CAS  Google Scholar 

  16. Gachet C (2006) Regulation of platelet functions by P2 receptors. Annu Rev Pharmacol Toxicol 46:277–300

    Article  PubMed  CAS  Google Scholar 

  17. Abbracchio MP, Burnstock G, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Knight GE, Fumagalli M, Gachet C, Jacobson KA, Weisman GA (2006) International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev 58:281–341

    Article  PubMed  CAS  Google Scholar 

  18. Baurand A, Raboisson P, Freund M, Léon C, Cazenave JP, Bourguignon JJ, Gachet C (2001) Inhibition of platelet function by administration of MRS2179, a P2Y1 receptor antagonist. Eur J Pharmacol 412(3):213–221

    Article  PubMed  CAS  Google Scholar 

  19. Ohlmann P, de Castro S, Brown GG Jr, Gachet C, Jacobson KA, Harden TK (2010) Quantification of recombinant and platelet P2Y(1) receptors utilizing a [(125)I]-labeled high-affinity antagonist 2-iodo-N(6)-methyl-(N)-methanocarba-2′-deoxyadenosine-3′,5′-bisphosphate ([(125)I]MRS2500). Pharmacol Res 62(4):344–351. doi:10.1016/j.phrs.2010.05.007

    Article  PubMed  CAS  Google Scholar 

  20. Hechler B, Léon C, Vial C, Vigne P, Frelin C, Cazenave JP, Gachet C (1998) The P2Y1 receptor is necessary for adenosine 5′-diphosphate-induced platelet aggregation. Blood 92(1):152–159

    PubMed  CAS  Google Scholar 

  21. Jin J, Daniel JL, Kunapuli SP (1998) Molecular basis for ADP-induced platelet activation. II. The P2Y1 receptor mediates ADP-induced intracellular calcium mobilization and shape change in platelets. J Biol Chem 273(4):2030–2034

    Article  PubMed  CAS  Google Scholar 

  22. Savi P, Beauverger P, Labouret C, Delfaud M, Salel V, Kaghad M, Herbert JM (1998) Role of P2Y1 purinoceptor in ADP-induced platelet activation. FEBS Lett 422(3):291–295

    Article  PubMed  CAS  Google Scholar 

  23. Léon C, Hechler B, Freund M, Eckly A, Vial C, Ohlmann P, Dierich A, LeMeur M, Cazenave JP, Gachet C (1999) Defective platelet aggregation and increased resistance to thrombosis in purinergic P2Y(1) receptor-null mice. J Clin Invest 104(12):1731–1737

    Article  PubMed  Google Scholar 

  24. Mangin P, Ohlmann P, Eckly A, Cazenave JP, Lanza F, Gachet C (2004) The P2Y receptor plays an essential role in the platelet shape change induced by collagen when TxA2 formation is prevented. J Thromb Haemost 2(6):969–977

    Article  PubMed  CAS  Google Scholar 

  25. Jacobson KA, Boeynaems JM (2010) P2Y nucleotide receptors: promise of therapeutic applications. Drug Discov Today 15(13–14):570–578. doi:10.1016/j.drudis.2010.05.011

    Article  PubMed  CAS  Google Scholar 

  26. Boyer JL, Romero-Avila T, Schachter JB, Harden TK (1996) Identification of competitive antagonists of the P2Y1 receptor. Mol Pharmacol 50(5):1323–1329

    PubMed  CAS  Google Scholar 

  27. Baurand A, Gachet C (2003) The P2Y(1) receptor as a target for new antithrombotic drugs: a review of the P2Y(1) antagonist MRS-2179. Cardiovasc Drug Rev 21(1):67–76

    Article  PubMed  CAS  Google Scholar 

  28. Boyer JL, Mohanram A, Camaioni E, Jacobson KA, Harden TK (1998) Competitive and selective antagonism of P2Y1 receptors by N6-methyl 2′-deoxyadenosine 3′,5′-bisphosphate. Br J Pharmacol 124(1):1–3

    Article  PubMed  CAS  Google Scholar 

  29. Kim HS, Ohno M, Xu B, Kim HO, Choi Y, Ji XD, Maddileti S, Marquez VE, Harden TK, Jacobson KA (2003) 2-Substitution of adenine nucleotide analogues containing a bicyclo[3.1.0]hexane ring system locked in a northern conformation: enhanced potency as P2Y1 receptor antagonists. J Med Chem 46(23):4974–4987

    Article  PubMed  CAS  Google Scholar 

  30. Waldo GL, Corbitt J, Boyer JL, Ravi G, Kim HS, Ji XD, Lacy J, Jacobson KA, Harden TK (2002) Quantitation of the P2Y(1) receptor with a high affinity radiolabeled antagonist. Mol Pharmacol 62(5):1249–1257

    Article  PubMed  CAS  Google Scholar 

  31. Boyer JL, Adams M, Ravi RG, Jacobson KA, Harden TK (2002) 2-Chloro N(6)-methyl-(N)-methanocarba-2′-deoxyadenosine-3′,5′-bisphosphate is a selective high affinity P2Y(1) receptor antagonist. Br J Pharmacol 135(8):2004–2010

    Article  PubMed  CAS  Google Scholar 

  32. Cattaneo M, Lecchi A, Ohno M, Joshi BV, Besada P, Tchilibon S, Lombardi R, Bischofberger N, Harden TK, Jacobson KA (2004) Antiaggregatory activity in human platelets of potent antagonists of the P2Y1 receptor. Biochem Pharmacol 68(10):1995–2002

    Article  PubMed  CAS  Google Scholar 

  33. Kaiser RA, Buxton IL (2002) Nucleotide-mediated relaxation in guinea-pig aorta: selective inhibition by MRS2179. Br J Pharmacol 135(2):537–545

    Article  PubMed  CAS  Google Scholar 

  34. Guns PJ, Korda A, Crauwels HM, Van Assche T, Robaye B, Boeynaems JM, Bult H (2005) Pharmacological characterization of nucleotide P2Y receptors on endothelial cells of the mouse aorta. Br J Pharmacol 146(2):288–295

    Article  PubMed  CAS  Google Scholar 

  35. Shen J, DiCorleto PE (2008) ADP stimulates human endothelial cell migration via P2Y1 nucleotide receptor-mediated mitogen-activated protein kinase pathways. Circ Res 102(4):448–456

    Article  PubMed  CAS  Google Scholar 

  36. Marques-da-Silva C, Burnstock G, Ojcius DM, Coutinho-Silva R (2011) Purinergic receptor agonists modulate phagocytosis and clearance of apoptotic cells in macrophages. Immunobiology 216(1–2):1–11. doi:10.1016/j.imbio.2010.03.010

    Article  PubMed  CAS  Google Scholar 

  37. Hollopeter G, Jantzen HM, Vincent D, Li G, England L, Ramakrishnan V, Yang RB, Nurden P, Nurden A, Julius D, Conley PB (2001) Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature 409(6817):202–207

    Article  PubMed  CAS  Google Scholar 

  38. Zhang FL, Luo L, Gustafson E, Lachowicz J, Smith M, Qiao X, Liu YH, Chen G, Pramanik B, Laz TM, Palmer K, Bayne M, Monsma FJ Jr (2001) ADP is the cognate ligand for the orphan G protein-coupled receptor SP1999. J Biol Chem 276(11):8608–8615

    Article  PubMed  CAS  Google Scholar 

  39. Haynes SE, Hollopeter G, Yang G, Kurpius D, Dailey ME, Gan WB, Julius D (2006) The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci 9(12):1512–1519. doi:10.1038/nn1805

    Article  PubMed  CAS  Google Scholar 

  40. Wihlborg AK, Wang L, Braun OO, Eyjolfsson A, Gustafsson R, Gudbjartsson T, Erlinge D (2004) ADP receptor P2Y12 is expressed in vascular smooth muscle cells and stimulates contraction in human blood vessels. Arterioscler Thromb Vasc Biol 24(10):1810–1815

    Article  PubMed  CAS  Google Scholar 

  41. Hogberg C, Svensson H, Gustafsson R, Eyjolfsson A, Erlinge D (2010) The reversible oral P2Y12 antagonist AZD6140 inhibits ADP-induced contractions in murine and human vasculature. Int J Cardiol 142(2):187–192. doi:10.1016/j.ijcard.2008.12.091

    Article  PubMed  Google Scholar 

  42. Cattaneo M (2011) The platelet P2Y receptor for adenosine diphosphate: congenital and drug-induced defects. Blood 117(7):2102–2112. doi:10.1182/blood-2010-08-263111

    Article  PubMed  CAS  Google Scholar 

  43. Gachet C (2005) The platelet P2 receptors as molecular targets for old and new antiplatelet drugs. Pharmacol Ther 108(2):180–192

    Article  PubMed  CAS  Google Scholar 

  44. Kauffenstein G, Hechler B, Cazenave JP, Gachet C (2004) Adenine triphosphate nucleotides are antagonists at the P2Y12 receptor. J Thromb Haemost 2(11):1980–1988

    Article  PubMed  CAS  Google Scholar 

  45. Michelson AD (2009) New P2Y12 antagonists. Curr Opin Hematol 16(5):371–377. doi:10.1097/MOH.0b013e32832ea2f2

    Article  PubMed  CAS  Google Scholar 

  46. Hechler B, Eckly A, Ohlmann P, Cazenave JP, Gachet C (1998) The P2Y1 receptor, necessary but not sufficient to support full ADP-induced platelet aggregation, is not the target of the drug clopidogrel. Br J Haematol 103(3):858–866

    Article  PubMed  CAS  Google Scholar 

  47. Nieswandt B, Schulte V, Zywietz A, Gratacap MP, Offermanns S (2002) Costimulation of Gi- and G12/G13-mediated signaling pathways induces integrin alpha IIbbeta 3 activation in platelets. J Biol Chem 277(42):39493–39498

    Article  PubMed  CAS  Google Scholar 

  48. Dorsam RT, Kim S, Jin J, Kunapuli SP (2002) Coordinated signaling through both G12/13 and G(i) pathways is sufficient to activate GPIIb/IIIa in human platelets. J Biol Chem 277(49):47588–47595

    Article  PubMed  CAS  Google Scholar 

  49. Polgar J, Eichler P, Greinacher A, Clemetson KJ (1998) Adenosine diphosphate (ADP) and ADP receptor play a major role in platelet activation/aggregation induced by sera from heparin-induced thrombocytopenia patients. Blood 91(2):549–554

    PubMed  CAS  Google Scholar 

  50. Gratacap MP, Herault JP, Viala C, Ragab A, Savi P, Herbert JM, Chap H, Plantavid M, Payrastre B (2000) FcgammaRIIA requires a Gi-dependent pathway for an efficient stimulation of phosphoinositide 3-kinase, calcium mobilization, and platelet aggregation. Blood 96(10):3439–3446

    PubMed  CAS  Google Scholar 

  51. Nieswandt B, Bergmeier W, Eckly A, Schulte V, Ohlmann P, Cazenave JP, Zirngibl H, Offermanns S, Gachet C (2001) Evidence for cross-talk between glycoprotein VI and Gi-coupled receptors during collagen-induced platelet aggregation. Blood 97(12):3829–3835

    Article  PubMed  CAS  Google Scholar 

  52. Ohlmann P, Eckly A, Freund M, Cazenave JP, Offermanns S, Gachet C (2000) ADP induces partial platelet aggregation without shape change and potentiates collagen-induced aggregation in the absence of Galphaq. Blood 96(6):2134–2139

    PubMed  CAS  Google Scholar 

  53. Cattaneo M, Lombardi R, Zighetti ML, Gachet C, Ohlmann P, Cazenave JP, Mannucci PM (1997) Deficiency of (33P)2MeS-ADP binding sites on platelets with secretion defect, normal granule stores and normal thromboxane A2 production. Evidence that ADP potentiates platelet secretion independently of the formation of large platelet aggregates and thromboxane A2 production. Thromb Haemost 77(5):986–990

    PubMed  CAS  Google Scholar 

  54. Cattaneo M, Lecchi A, Lombardi R, Gachet C, Zighetti ML (2000) Platelets from a patient heterozygous for the defect of P2CYC receptors for ADP have a secretion defect despite normal thromboxane A2 production and normal granule stores: further evidence that some cases of platelet ‘primary secretion defect’ are heterozygous for a defect of P2CYC receptors. Arterioscler Thromb Vasc Biol 20(11):E101–E106

    Article  PubMed  CAS  Google Scholar 

  55. Cattaneo M, Canciani MT, Lecchi A, Kinlough-Rathbone RL, Packham MA, Mannucci PM, Mustard JF (1990) Released adenosine diphosphate stabilizes thrombin-induced human platelet aggregates. Blood 75(5):1081–1086

    PubMed  CAS  Google Scholar 

  56. Trumel C, Payrastre B, Plantavid M, Hechler B, Viala C, Presek P, Martinson EA, Cazenave JP, Chap H, Gachet C (1999) A key role of adenosine diphosphate in the irreversible platelet aggregation induced by the PAR1-activating peptide through the late activation of phosphoinositide 3-kinase. Blood 94(12):4156–4165

    PubMed  CAS  Google Scholar 

  57. Humbert M, Nurden P, Bihour C, Pasquet JM, Winckler J, Heilmann E, Savi P, Herbert JM, Kunicki TJ, Nurden AT (1996) Ultrastructural studies of platelet aggregates from human subjects receiving clopidogrel and from a patient with an inherited defect of an ADP-dependent pathway of platelet activation. Arterioscler Thromb Vasc Biol 16(12):1532–1543

    Article  PubMed  CAS  Google Scholar 

  58. Eckly A, Gendrault JL, Hechler B, Cazenave JP, Gachet C (2001) Differential involvement of the P2Y1 and P2YT receptors in the morphological changes of platelet aggregation. Thromb Haemost 85(4):694–701

    PubMed  CAS  Google Scholar 

  59. Foster CJ, Prosser DM, Agans JM, Zhai Y, Smith MD, Lachowicz JE, Zhang FL, Gustafson E, Monsma FJ Jr, Wiekowski MT, Abbondanzo SJ, Cook DN, Bayne ML, Lira SA, Chintala MS (2001) Molecular identification and characterization of the platelet ADP receptor targeted by thienopyridine antithrombotic drugs. J Clin Invest 107(12):1591–1598

    Article  PubMed  CAS  Google Scholar 

  60. Ohlmann P, Laugwitz KL, Nurnberg B, Spicher K, Schultz G, Cazenave JP, Gachet C (1995) The human platelet ADP receptor activates Gi2 proteins. Biochem J 312(Pt 3):775–779

    PubMed  CAS  Google Scholar 

  61. Jantzen HM, Milstone DS, Gousset L, Conley PB, Mortensen RM (2001) Impaired activation of murine platelets lacking G alpha(i2). J Clin Invest 108(3):477–483

    PubMed  CAS  Google Scholar 

  62. Hardy AR, Jones ML, Mundell SJ, Poole AW (2004) Reciprocal cross-talk between P2Y1 and P2Y12 receptors at the level of calcium signaling in human platelets. Blood 104(6):1745–1752. doi:10.1182/blood-2004-02-05342004-02-0534

    Article  PubMed  CAS  Google Scholar 

  63. Haslam RJ (1973) Interactions of the pharmacological receptors of blood platelets with adenylate cyclase. Ser Haematol 6(3):333–350

    PubMed  CAS  Google Scholar 

  64. Savi P, Pflieger AM, Herbert JM (1996) cAMP is not an important messenger for ADP-induced platelet aggregation. Blood Coagul Fibrinolysis 7(2):249–252

    Article  PubMed  CAS  Google Scholar 

  65. Daniel JL, Dangelmaier C, Jin J, Kim YB, Kunapuli SP (1999) Role of intracellular signaling events in ADP-induced platelet aggregation. Thromb Haemost 82(4):1322–1326

    PubMed  CAS  Google Scholar 

  66. Yang J, Wu J, Jiang H, Mortensen R, Austin S, Manning DR, Woulfe D, Brass LF (2002) Signaling through Gi family members in platelets. Redundancy and specificity in the regulation of adenylyl cyclase and other effectors. J Biol Chem 277(48):46035–46042

    Article  PubMed  CAS  Google Scholar 

  67. Cosemans JM, Munnix IC, Wetzker R, Heller R, Jackson SP, Heemskerk JW (2006) Continuous signaling via PI3K isoforms beta and gamma is required for platelet ADP receptor function in dynamic thrombus stabilization. Blood 108(9):3045–3052. doi:10.1182/blood-2006-03-006338

    Article  PubMed  CAS  Google Scholar 

  68. Gratacap MP, Guillermet-Guibert J, Martin V, Chicanne G, Tronchere H, Gaits-Iacovoni F, Payrastre B (2011) Regulation and roles of PI3Kbeta, a major actor in platelet signaling and functions. Adv Enzyme Regul 51(1):106–116. doi:10.1016/j.advenzreg.2010.09.011

    Article  PubMed  CAS  Google Scholar 

  69. Jackson SP, Yap CL, Anderson KE (2004) Phosphoinositide 3-kinases and the regulation of platelet function. Biochem Soc Trans 32(Pt 2):387–392

    Article  PubMed  CAS  Google Scholar 

  70. Schoenwaelder SM, Ono A, Sturgeon S, Chan SM, Mangin P, Maxwell MJ, Turnbull S, Mulchandani M, Anderson K, Kauffenstein G, Rewcastle GW, Kendall J, Gachet C, Salem HH, Jackson SP (2007) Identification of a unique co-operative phosphoinositide 3-kinase signaling mechanism regulating integrin alpha IIb beta 3 adhesive function in platelets. J Biol Chem 282(39):28648–28658. doi:10.1074/jbc.M704358200

    Article  PubMed  CAS  Google Scholar 

  71. Jackson SP, Schoenwaelder SM, Goncalves I, Nesbitt WS, Yap CL, Wright CE, Kenche V, Anderson KE, Dopheide SM, Yuan Y, Sturgeon SA, Prabaharan H, Thompson PE, Smith GD, Shepherd PR, Daniele N, Kulkarni S, Abbott B, Saylik D, Jones C, Lu L, Giuliano S, Hughan SC, Angus JA, Robertson AD, Salem HH (2005) PI 3-kinase p110beta: a new target for antithrombotic therapy. Nat Med 11(6):507–514

    Article  PubMed  CAS  Google Scholar 

  72. Lova P, Paganini S, Sinigaglia F, Balduini C, Torti M (2002) A Gi-dependent pathway is required for activation of the small GTPase Rap1B in human platelets. J Biol Chem 277(14):12009–12015

    Article  PubMed  CAS  Google Scholar 

  73. Lova P, Paganini S, Hirsch E, Barberis L, Wymann M, Sinigaglia F, Balduini C, Torti M (2003) A selective role for phosphatidylinositol 3,4,5-trisphosphate in the Gi-dependent activation of platelet Rap1B. J Biol Chem 278(1):131–138

    Article  PubMed  CAS  Google Scholar 

  74. Woulfe D, Jiang H, Mortensen R, Yang J, Brass LF (2002) Activation of Rap1B by G(i) family members in platelets. J Biol Chem 277(26):23382–23390

    Article  PubMed  CAS  Google Scholar 

  75. Larson MK, Chen H, Kahn ML, Taylor AM, Fabre JE, Mortensen RM, Conley PB, Parise LV (2003) Identification of P2Y12-dependent and -independent mechanisms of glycoprotein VI-mediated Rap1 activation in platelets. Blood 101(4):1409–1415

    Article  PubMed  CAS  Google Scholar 

  76. Martin V, Guillermet-Guibert J, Chicanne G, Cabou C, Jandrot-Perrus M, Plantavid M, Vanhaesebroeck B, Payrastre B, Gratacap MP (2010) Deletion of the p110beta isoform of phosphoinositide 3-kinase in platelets reveals its central role in Akt activation and thrombus formation in vitro and in vivo. Blood 115(10):2008–2013. doi:10.1182/blood-2009-04-217224

    Article  PubMed  CAS  Google Scholar 

  77. Li Z, Zhang G, Le Breton GC, Gao X, Malik AB, Du X (2003) Two waves of platelet secretion induced by thromboxane A2 receptor and a critical role for phosphoinositide 3-kinases. J Biol Chem 278(33):30725–30731

    Article  PubMed  CAS  Google Scholar 

  78. Hirsch E, Bosco O, Tropel P, Laffargue M, Calvez R, Altruda F, Wymann M, Montrucchio G (2001) Resistance to thromboembolism in PI3Kgamma-deficient mice. FASEB J 15(11):2019–2021

    PubMed  CAS  Google Scholar 

  79. Geiger J, Brich J, Honig-Liedl P, Eigenthaler M, Schanzenbacher P, Herbert JM, Walter U (1999) Specific impairment of human platelet P2Y(AC) ADP receptor-mediated signaling by the antiplatelet drug clopidogrel. Arterioscler Thromb Vasc Biol 19(8):2007–2011

    Article  PubMed  CAS  Google Scholar 

  80. Jin J, Kunapuli SP (1998) Coactivation of two different G protein-coupled receptors is essential for ADP-induced platelet aggregation. Proc Natl Acad Sci USA 95(14):8070–8074

    Article  PubMed  CAS  Google Scholar 

  81. Léon C, Ravanat C, Freund M, Cazenave JP, Gachet C (2003) Differential involvement of the P2Y1 and P2Y12 receptors in platelet procoagulant activity. Arterioscler Thromb Vasc Biol 23(10):1941–1947

    Article  PubMed  CAS  Google Scholar 

  82. Léon C, Alex M, Klocke A, Morgenstern E, Moosbauer C, Eckly A, Spannagl M, Gachet C, Engelmann B (2004) Platelet ADP receptors contribute to the initiation of intravascular coagulation. Blood 103(2):594–600

    Article  PubMed  CAS  Google Scholar 

  83. Storey RF, Sanderson HM, White AE, May JA, Cameron KE, Heptinstall S (2000) The central role of the P(2T) receptor in amplification of human platelet activation, aggregation, secretion and procoagulant activity. Br J Haematol 110(4):925–934

    Article  PubMed  CAS  Google Scholar 

  84. Léon C, Freund M, Ravanat C, Baurand A, Cazenave JP, Gachet C (2001) Key role of the P2Y(1) receptor in tissue factor-induced thrombin-dependent acute thromboembolism: studies in P2Y(1)-knockout mice and mice treated with a P2Y(1) antagonist. Circulation 103(5):718–723

    PubMed  Google Scholar 

  85. Vial C, Hechler B, Léon C, Cazenave JP, Gachet C (1997) Presence of P2X1 purinoceptors in human platelets and megakaryoblastic cell lines. Thromb Haemost 78(6):1500–1504

    PubMed  CAS  Google Scholar 

  86. Cattaneo M, Marchese P, Jacobson KA, Ruggeri Z (2002) New insights into the role of P2X1 in platelet function. Haematologica 87(10):13–14

    Google Scholar 

  87. Oury C, Sticker E, Cornelissen H, De Vos R, Vermylen J, Hoylaerts MF (2004) ATP augments von Willebrand factor-dependent shear-induced platelet aggregation through Ca2+-calmodulin and myosin light chain kinase activation. J Biol Chem 279(25):26266–26273

    Article  PubMed  CAS  Google Scholar 

  88. Hechler B, Lenain N, Marchese P, Vial C, Heim V, Freund M, Cazenave JP, Cattaneo M, Ruggeri ZM, Evans R, Gachet C (2003) A role of the fast ATP-gated P2X1 cation channel in thrombosis of small arteries in vivo. J Exp Med 198(4):661–667. doi:10.1084/jem.20030144jem.20030144

    Article  PubMed  CAS  Google Scholar 

  89. Baurand A, Eckly A, Bari N, Leon C, Hechler B, Cazenave JP, Gachet C (2000) Desensitization of the platelet aggregation response to ADP: differential down-regulation of the P2Y1 and P2cyc receptors. Thromb Haemost 84(3):484–491

    PubMed  CAS  Google Scholar 

  90. Hoffmann C, Ziegler N, Reiner S, Krasel C, Lohse MJ (2008) Agonist-selective, receptor-specific interaction of human P2Y receptors with beta-arrestin-1 and −2. J Biol Chem 283(45):30933–30941. doi:10.1074/jbc.M801472200

    Article  PubMed  CAS  Google Scholar 

  91. Baurand A, Eckly A, Hechler B, Kauffenstein G, Galzi JL, Cazenave JP, Leon C, Gachet C (2005) Differential regulation and relocalization of the platelet P2Y receptors after activation: a way to avoid loss of hemostatic properties? Mol Pharmacol 67(3):721–733. doi:10.1124/mol.104.004846

    Article  PubMed  CAS  Google Scholar 

  92. Reiner S, Ziegler N, Leon C, Lorenz K, von Hayn K, Gachet C, Lohse MJ, Hoffmann C (2009) beta-Arrestin-2 interaction and internalization of the human P2Y1 receptor are dependent on C-terminal phosphorylation sites. Mol Pharmacol 76(6):1162–1171. doi:10.1124/mol.109.060467

    Article  PubMed  CAS  Google Scholar 

  93. Mundell SJ, Jones ML, Hardy AR, Barton JF, Beaucourt SM, Conley PB, Poole AW (2006) Distinct roles for protein kinase C isoforms in regulating platelet purinergic receptor function. Mol Pharmacol 70(3):1132–1142. doi:10.1124/mol.106.023549

    Article  PubMed  CAS  Google Scholar 

  94. Hardy AR, Conley PB, Luo J, Benovic JL, Poole AW, Mundell SJ (2005) P2Y1 and P2Y12 receptors for ADP desensitize by distinct kinase-dependent mechanisms. Blood 105(9):3552–3560. doi:10.1182/blood-2004-07-2893

    Article  PubMed  CAS  Google Scholar 

  95. MacKenzie AB, Mahaut-Smith MP, Sage SO (1996) Activation of receptor-operated cation channels via P2X1 not P2T purinoceptors in human platelets. J Biol Chem 271(6):2879–2881

    Article  PubMed  CAS  Google Scholar 

  96. Roberts JA, Vial C, Digby HR, Agboh KC, Wen H, Atterbury-Thomas A, Evans RJ (2006) Molecular properties of P2X receptors. Pflugers Archiv: Eur J Physiol 452(5):486–500. doi:10.1007/s00424-006-0073-6

    Article  CAS  Google Scholar 

  97. Fontana P, Dupont A, Gandrille S, Bachelot-Loza C, Reny JL, Aiach M, Gaussem P (2003) Adenosine diphosphate-induced platelet aggregation is associated with P2Y12 gene sequence variations in healthy subjects. Circulation 108(8):989–995

    Article  PubMed  CAS  Google Scholar 

  98. Staritz P, Kurz K, Stoll M, Giannitsis E, Katus HA, Ivandic BT (2009) Platelet reactivity and clopidogrel resistance are associated with the H2 haplotype of the P2Y12-ADP receptor gene. Int J Cardiol 133(3):341–345. doi:10.1016/j.ijcard.2007.12.118

    Article  PubMed  Google Scholar 

  99. Fontana P, Gaussem P, Aiach M, Fiessinger JN, Emmerich J, Reny JL (2003) P2Y12 H2 haplotype is associated with peripheral arterial disease: a case-control study. Circulation 108(24):2971–2973

    Article  PubMed  Google Scholar 

  100. Cavallari U, Trabetti E, Malerba G, Biscuola M, Girelli D, Olivieri O, Martinelli N, Angiolillo DJ, Corrocher R, Pignatti PF (2007) Gene sequence variations of the platelet P2Y12 receptor are associated with coronary artery disease. BMC Med Genet 8:59. doi:10.1186/1471-2350-8-59

    Article  PubMed  CAS  Google Scholar 

  101. Bura A, Bachelot-Loza C, Ali FD, Aiach M, Gaussem P (2006) Role of the P2Y12 gene polymorphism in platelet responsiveness to clopidogrel in healthy subjects. J Thromb Haemost 4(9):2096–2097. doi:10.1111/j.1538-7836.2006.02113.x

    Article  PubMed  CAS  Google Scholar 

  102. Lev EI, Patel RT, Guthikonda S, Lopez D, Bray PF, Kleiman NS (2007) Genetic polymorphisms of the platelet receptors P2Y(12), P2Y(1) and GP IIIa and response to aspirin and clopidogrel. Thromb Res 119(3):355–360. doi:10.1016/j.thromres.2006.02.006

    Article  PubMed  CAS  Google Scholar 

  103. Zee RY, Michaud SE, Diehl KA, Chasman DI, Emmerich J, Gaussem P, Aiach M, Ridker PM (2008) Purinergic receptor P2Y, G-protein coupled, 12 gene variants and risk of incident ischemic stroke, myocardial infarction, and venous thromboembolism. Atherosclerosis 197(2):694–699. doi:10.1016/j.atherosclerosis.2007.07.001

    Article  PubMed  CAS  Google Scholar 

  104. Hetherington SL, Singh RK, Lodwick D, Thompson JR, Goodall AH, Samani NJ (2005) Dimorphism in the P2Y1 ADP receptor gene is associated with increased platelet activation response to ADP. Arterioscler Thromb Vasc Biol 25(1):252–257

    PubMed  CAS  Google Scholar 

  105. Sibbing D, von Beckerath O, Schomig A, Kastrati A, von Beckerath N (2006) P2Y1 gene A1622G dimorphism is not associated with adenosine diphosphate-induced platelet activation and aggregation after administration of a single high dose of clopidogrel. J Thromb Haemost 4(4):912–914. doi:10.1111/j.1538-7836.2006.01869.x

    Article  PubMed  CAS  Google Scholar 

  106. Savi P, Herbert JM (2005) Clopidogrel and ticlopidine: P2Y12 adenosine diphosphate-receptor antagonists for the prevention of atherothrombosis. Semin Thromb Hemost 31(2):174–183

    Article  PubMed  CAS  Google Scholar 

  107. Savi P, Pereillo JM, Uzabiaga MF, Combalbert J, Picard C, Maffrand JP, Pascal M, Herbert JM (2000) Identification and biological activity of the active metabolite of clopidogrel. Thromb Haemost 84(5):891–896

    PubMed  CAS  Google Scholar 

  108. Savi P, Laplace MC, Herbert JM (1994) Evidence for the existence of two different ADP-binding sites on rat platelets. Thromb Res 76(2):157–169

    Article  PubMed  CAS  Google Scholar 

  109. Gachet C, Cattaneo M, Ohlmann P, Hechler B, Lecchi A, Chevalier J, Cassel D, Mannucci PM, Cazenave JP (1995) Purinoceptors on blood platelets: further pharmacological and clinical evidence to suggest the presence of two ADP receptors. Br J Haematol 91(2):434–444

    Article  PubMed  CAS  Google Scholar 

  110. Mills DC, Puri R, Hu CJ, Minniti C, Grana G, Freedman MD, Colman RF, Colman RW (1992) Clopidogrel inhibits the binding of ADP analogues to the receptor mediating inhibition of platelet adenylate cyclase. Arterioscler Thromb 12(4):430–436

    Article  PubMed  CAS  Google Scholar 

  111. Savi P, Zachayus JL, Delesque-Touchard N, Labouret C, Herve C, Uzabiaga MF, Pereillo JM, Culouscou JM, Bono F, Ferrara P, Herbert JM (2006) The active metabolite of clopidogrel disrupts P2Y12 receptor oligomers and partitions them out of lipid rafts. Proc Natl Acad Sci USA 103(29):11069–11074

    Article  PubMed  CAS  Google Scholar 

  112. Meadows TA, Bhatt DL (2007) Clinical aspects of platelet inhibitors and thrombus formation. Circ Res 100(9):1261–1275. doi:10.1161/01.RES.0000264509.36234.51

    Article  PubMed  CAS  Google Scholar 

  113. Tomasello SD, Tello-Montoliu A, Angiolillo DJ (2011) Prasugrel for the treatment of coronary thrombosis: a review of pharmacological properties, indications for use and future development. Expert Opin Investig Drugs 20(1):119–133. doi:10.1517/13543784.2010.538381

    Article  PubMed  CAS  Google Scholar 

  114. Wiviott SD, Braunwald E, McCabe CH, Montalescot G, Ruzyllo W, Gottlieb S, Neumann FJ, Ardissino D, De Servi S, Murphy SA, Riesmeyer J, Weerakkody G, Gibson CM, Antman EM (2007) Prasugrel versus clopidogrel in patients with acute coronary syndromes. N Engl J Med 357(20):2001–2015. doi:10.1056/NEJMoa0706482

    Article  PubMed  CAS  Google Scholar 

  115. Bhatt DL (2009) Prasugrel in clinical practice. N Engl J Med 361(10):940–942

    Article  PubMed  CAS  Google Scholar 

  116. Cattaneo M (2010) New P2Y(12) inhibitors. Circulation 121(1):171–179. doi:10.1161/CIRCULATIONAHA.109.853069

    Article  PubMed  Google Scholar 

  117. Storey RF (2011) Pharmacology and clinical trials of reversibly-binding P2Y12 inhibitors. Thromb Haemost 105(Suppl 1):S75–S81. doi:10.1160/THS10-12-0769

    Article  PubMed  CAS  Google Scholar 

  118. Ferreiro JL, Ueno M, Angiolillo DJ (2009) Cangrelor: a review on its mechanism of action and clinical development. Expert Rev Cardiovasc Ther 7(10):1195–1201. doi:10.1586/erc.09.101

    Article  PubMed  CAS  Google Scholar 

  119. Nawarskas JJ, Clark SM (2011) Ticagrelor: a novel reversible oral antiplatelet agent. Cardiol Rev 19(2):95–100. doi:10.1097/CRD.0b013e3182099d8600045415-201103000-00011

    Article  PubMed  Google Scholar 

  120. Gurbel PA, Kereiakes DJ, Tantry US (2010) Ticagrelor for the treatment of arterial thrombosis. Expert Opin Pharmacother 11(13):2251–2259. doi:10.1517/14656566.2010.511175

    Article  PubMed  CAS  Google Scholar 

  121. Fabre JE, Nguyen M, Latour A, Keifer JA, Audoly LP, Coffman TM, Koller BH (1999) Decreased platelet aggregation, increased bleeding time and resistance to thromboembolism in P2Y1-deficient mice. Nat Med 5(10):1199–1202

    Article  PubMed  CAS  Google Scholar 

  122. Lenain N, Freund M, Léon C, Cazenave JP, Gachet C (2003) Inhibition of localized thrombosis in P2Y1-deficient mice and rodents treated with MRS2179, a P2Y1 receptor antagonist. J Thromb Haemost 1(6):1144–1149

    Article  PubMed  CAS  Google Scholar 

  123. Hechler B, Nonne C, Roh EJ, Cattaneo M, Cazenave JP, Lanza F, Jacobson KA, Gachet C (2006) MRS2500 [2-iodo-N6-methyl-(N)-methanocarba-2′-deoxyadenosine-3′,5′-bisphosphate], a potent, selective, and stable antagonist of the platelet P2Y1 receptor with strong antithrombotic activity in mice. J Pharmacol Exp Ther 316(2):556–563. doi:10.1124/jpet.105.094037

    Article  PubMed  CAS  Google Scholar 

  124. Morales-Ramos AI, Mecom JS, Kiesow TJ, Graybill TL, Brown GD, Aiyar NV, Davenport EA, Kallal LA, Knapp-Reed BA, Li P, Londregan AT, Morrow DM, Senadhi S, Thalji RK, Zhao S, Burns-Kurtis CL, Marino JP Jr (2008) Tetrahydro-4-quinolinamines identified as novel P2Y(1) receptor antagonists. Bioorg Med Chem Lett 18(23):6222–6226. doi:10.1016/j.bmcl.2008.09.102

    Article  PubMed  CAS  Google Scholar 

  125. Pfefferkorn JA, Choi C, Winters T, Kennedy R, Chi L, Perrin LA, Lu G, Ping YW, McClanahan T, Schroeder R, Leininger MT, Geyer A, Schefzick S, Atherton J (2008) P2Y1 receptor antagonists as novel antithrombotic agents. Bioorg Med Chem Lett 18(11):3338–3343

    Article  PubMed  CAS  Google Scholar 

  126. Thalji RK, Aiyar N, Davenport EA, Erhardt JA, Kallal LA, Morrow DM, Senadhi S, Burns-Kurtis CL, Marino JP Jr (2010) Benzofuran-substituted urea derivatives as novel P2Y(1) receptor antagonists. Bioorg Med Chem Lett 20(14):4104–4107. doi:10.1016/j.bmcl.2010.05.072

    Article  PubMed  CAS  Google Scholar 

  127. Zerr M, Hechler B, Freund M, Magnenat S, Lanois I, Cazenave JP, Léon C, Gachet C (2011) Major contribution of the P2Y1 receptor in purinergic regulation of TNFα-induced vascular inflammation. Circulation 123:2404–2413

    Article  PubMed  CAS  Google Scholar 

  128. Hechler B, Freund M, Ravanat C, Magnenat S, Cazenave JP, Gachet C (2008) Reduced atherosclerotic lesions in P2Y1/apolipoprotein E double-knockout mice: the contribution of non-hematopoietic-derived P2Y1 receptors. Circulation 118(7):754–763. doi:10.1161/CIRCULATIONAHA.108.788927

    Article  PubMed  CAS  Google Scholar 

  129. Oury C, Kuijpers MJ, Toth-Zsamboki E, Bonnefoy A, Danloy S, Vreys I, Feijge MA, De Vos R, Vermylen J, Heemskerk JW, Hoylaerts MF (2003) Overexpression of the platelet P2X1 ion channel in transgenic mice generates a novel prothrombotic phenotype. Blood 101(10):3969–3976

    Article  PubMed  CAS  Google Scholar 

  130. Kassack MU, Braun K, Ganso M, Ullmann H, Nickel P, Boing B, Muller G, Lambrecht G (2004) Structure-activity relationships of analogues of NF449 confirm NF449 as the most potent and selective known P2X1 receptor antagonist. Eur J Med Chem 39(4):345–357

    Article  PubMed  CAS  Google Scholar 

  131. Hechler B, Magnenat S, Zighetti ML, Kassack MU, Ullmann H, Cazenave JP, Evans R, Cattaneo M, Gachet C (2005) Inhibition of platelet functions and thrombosis through selective or nonselective inhibition of the platelet P2 receptors with increasing doses of NF449 [4,4′,4″,4‴-(carbonylbis(imino-5,1,3-benzenetriylbis-(carbonylimino)))t etrakis-benzene-1,3-disulfonic acid octasodium salt]. J Pharmacol Exp Ther 314(1):232–243. doi:10.1124/jpet.105.084673

    Article  PubMed  CAS  Google Scholar 

  132. Steinhubl SR, Badimon JJ, Bhatt DL, Herbert JM, Luscher TF (2007) Clinical evidence for anti-inflammatory effects of antiplatelet therapy in patients with atherothrombotic disease. Vasc Med 12(2):113–122

    Article  PubMed  Google Scholar 

  133. Li M, Zhang Y, Ren H, Zhu X (2007) Effect of clopidogrel on the inflammatory progression of early atherosclerosis in rabbits model. Atherosclerosis 194(2):348–356. doi:10.1016/j.atherosclerosis.2006.11.006

    Article  PubMed  CAS  Google Scholar 

  134. Afek A, Kogan E, Maysel-Auslender S, Mor A, Regev E, Rubinstein A, Keren G, George J (2009) Clopidogrel attenuates atheroma formation and induces a stable plaque phenotype in apolipoprotein E knockout mice. Microvasc Res 77(3):364–369. doi:10.1016/j.mvr.2009.01.009

    Article  PubMed  CAS  Google Scholar 

  135. Schulz C, Konrad I, Sauer S, Orschiedt L, Koellnberger M, Lorenz R, Walter U, Massberg S (2008) Effect of chronic treatment with acetylsalicylic acid and clopidogrel on atheroprogression and atherothrombosis in ApoE-deficient mice in vivo. Thromb Haemost 99(1):190–195

    PubMed  CAS  Google Scholar 

  136. Evans DJ, Jackman LE, Chamberlain J, Crosdale DJ, Judge HM, Jetha K, Norman KE, Francis SE, Storey RF (2009) Platelet P2Y(12) receptor influences the vessel wall response to arterial injury and thrombosis. Circulation 119(1):116–122. doi:10.1161/CIRCULATIONAHA.107.762690

    Article  PubMed  CAS  Google Scholar 

  137. Patil SB, Jackman LE, Francis SE, Judge HM, Nylander S, Storey RF (2010) Ticagrelor effectively and reversibly blocks murine platelet P2Y12-mediated thrombosis and demonstrates a requirement for sustained P2Y12 inhibition to prevent subsequent neointima. Arterioscler Thromb Vasc Biol 30(12):2385–2391. doi:10.1161/ATVBAHA.110.210732

    Article  PubMed  CAS  Google Scholar 

  138. Di Virgilio F, Chiozzi P, Ferrari D, Falzoni S, Sanz JM, Morelli A, Torboli M, Bolognesi G, Baricordi OR (2001) Nucleotide receptors: an emerging family of regulatory molecules in blood cells. Blood 97(3):587–600

    Article  PubMed  Google Scholar 

  139. Di Virgilio F, Solini A (2002) P2 receptors: new potential players in atherosclerosis. Br J Pharmacol 135(4):831–842

    Article  PubMed  Google Scholar 

  140. Gresele P, Grasselli S, Todisco T, Nenci GG (1985) Platelets and asthma. Lancet 1(8424):347

    Article  PubMed  CAS  Google Scholar 

  141. Pitchford SC, Momi S, Giannini S, Casali L, Spina D, Page CP, Gresele P (2005) Platelet P-selectin is required for pulmonary eosinophil and lymphocyte recruitment in a murine model of allergic inflammation. Blood 105(5):2074–2081. doi:10.1182/blood-2004-06-2282

    Article  PubMed  CAS  Google Scholar 

  142. Paruchuri S, Tashimo H, Feng C, Maekawa A, Xing W, Jiang Y, Kanaoka Y, Conley P, Boyce JA (2009) Leukotriene E4-induced pulmonary inflammation is mediated by the P2Y12 receptor. J Exp Med 206(11):2543–2555. doi:10.1084/jem.20091240

    Article  PubMed  CAS  Google Scholar 

  143. Maitre B, Freund M, Hechler B, Léon C, Heim V, Cazenave JP, Hanau D, Gachet C (2008) Involvement of the P2Y1 receptor in asthmatic airway inflammation (abstract). In: Purinergic signalling. Purines 2008 Meeting, 29 June–2 July 2008, Coppenhagen, Denmark, pp. S1–S210

  144. Bambace NM, Holmes CE (2011) The platelet contribution to cancer progression. J Thromb Haemost 9(2):237–249. doi:10.1111/j.1538-7836.2010.04131.x

    Article  PubMed  CAS  Google Scholar 

  145. Gay LJ, Felding-Habermann B (2011) Contribution of platelets to tumour metastasis. Nat Rev Cancer 11(2):123–134. doi:10.1038/nrc3004

    Article  PubMed  CAS  Google Scholar 

  146. Yeaman MR (2010) Platelets in defense against bacterial pathogens. Cell Mol Life Sci 67(4):525–544. doi:10.1007/s00018-009-0210-4

    Article  PubMed  CAS  Google Scholar 

  147. Semple JW, Italiano JE, Freedman J (2011) Platelets and the immune continuum. Nature reviews 11(4):264–274. doi:10.1038/nri2956

    Article  PubMed  CAS  Google Scholar 

  148. McMorran BJ, Marshall VM, de Graaf C, Drysdale KE, Shabbar M, Smyth GK, Corbin JE, Alexander WS, Foote SJ (2009) Platelets kill intraerythrocytic malarial parasites and mediate survival to infection. Science 323(5915):797–800. doi:10.1126/science.1166296

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Gachet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hechler, B., Gachet, C. P2 receptors and platelet function. Purinergic Signalling 7, 293–303 (2011). https://doi.org/10.1007/s11302-011-9247-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-011-9247-6

Keywords

Navigation