Skip to main content
Log in

Genomics of a phylum distant from flowering plants: conifers

  • Review
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Conifers are evolutionarily distant from angiosperms, separated by 300 million years of evolution. The genomes of coniferous species are very large, among the largest of any nonpolyploid plant species. Their genomes are characterized by reduced evolutionary rate for coding genes, accumulation of noncoding DNA, and evolutionarily distance from angiosperms. I highlight both the advantages and disadvantages for conifers as model organism for genomics. With advances of new high-throughput sequencing technologies, we are at a watershed in conifer genomics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aderkas P, Bonga JM (1993) Plants from haploid tissue culture of Larix decidua. TAG Theor Appl Genet 87:225–228

    Article  Google Scholar 

  • Allona I, Quinn M, Shoop E, Swope K, Cyr SS, Carlis J, Riedl J, Retzel E, Campbell MM, Sederoff R, Whetten RW (1998) Analysis of xylem formation in pine by cDNA sequencing. Proc Natl Acad Sci U S A 95:9693–9698

    Article  PubMed  CAS  Google Scholar 

  • Barbazuk WB, Bedell JA, Rabinowicz PD (2005) Reduced representation sequencing: a success in maize and a promise for other plant genomes. BioEssays 27:839–848

    Article  PubMed  CAS  Google Scholar 

  • Bautista R, Villalobos DP, Díaz-Moreno S, Cantón FR, Cánovas FM, Gonzalo Claros M (2007) Toward a Pinus pinaster bacterial artificial chromosome library. Ann For Sci 64:855–864

    Article  CAS  Google Scholar 

  • Bonfield JK, Whitwham A (2010) Gap5—editing the billion fragment sequence assembly. Bioinformatics 26:1699–1703

    Article  PubMed  CAS  Google Scholar 

  • Bowe LM, Coat G, dePamphilis CW (2000) Phylogeny of seed plants based on all three genomic compartments: extant gymnosperms are monophyletic and Gnetales’ closest relatives are conifers. Proc Natl Acad Sci U S A 97:4092–4097

    Article  PubMed  CAS  Google Scholar 

  • Brown GR, Gill GP, Kuntz RJ, Langley CH, Neale DB (2004) Nucleotide diversity and linkage disequilibrium in loblolly pine. Proc Natl Acad Sci U S A 101:15255–15260

    Article  PubMed  CAS  Google Scholar 

  • Burdon R, Wilcox P (2011) Integration of molecular markers in breeding. In: Plomion C, Bousquet J (eds) Genetics, genomics and breeding of conifers. Science Publishers, Edenbridge

    Google Scholar 

  • Buschizzo E, Ritland C, Bohlmann J, Ritland K (2012) Slow but not low: genomic comparisons reveals slower evolutionary rate and higher dN/dS in conifers compared to angiosperms. BMC Evol Biol 12:8

    Article  Google Scholar 

  • Cairney J, Xu N, Mackay J, Pullman J (2000) Special symposium: in vitro plant recalcitrance transcript profiling: a tool to assess the development of conifer embryos. In Vitro Cell Dev Biol Plant 36:155–162

    Article  CAS  Google Scholar 

  • Chagné D, Chaumeil P, Ramboer A, Collada C, Guevara A, Cervera M, Vendramin G, Garcia V, Frigerio JM, Echt C, Richardson T, Plomion C (2004) Cross-species transferability and mapping of genomic and cDNA SSRs in pines. TAG Theor Appl Genet 109:1204–1214

    Article  Google Scholar 

  • Chaw S-M, Chun-Chieh Shih A, Wang D, Wu Y-W, Liu S-M, Chou T-Y (2008) The mitochondrial genome of the gymnosperm Cycas taitungensis contains a novel family of short interspersed elements, Bpu sequences, and abundant RNA editing sites. Mol Biol Evol 25:603–615

    Article  PubMed  CAS  Google Scholar 

  • Choulet F, Wicker T, Rustenholz C, Paux E, Salse J, Leroy P, Schlub S, Le Paslier M-C, Magdelenat G, Gonthier C, Couloux A, Budak H, Breen J, Pumphrey M, Liu S, Kong X, Jia J, Gut M, Brunel D, Anderson JA, Gill BS, Appels R, Keller B, Feuillet C (2010) Megabase level sequencing reveals contrasted organization and evolution patterns of the wheat gene and transposable element spaces. Plant Cell 22:1686–1701

    Article  PubMed  CAS  Google Scholar 

  • Cronn R, Liston A, Parks M, Gernandt DS, Shen R, Mockler T (2008) Multiplex sequencing of plant chloroplast genomes using Solexa sequencing-by-synthesis technology. Nucleic Acids Res 36:e122

    Article  PubMed  Google Scholar 

  • Dauwe R, Robinson A, Mansfield S (2011) Recent advances in proteomics and metabolomics in gymnosperms. In: Plomion C, Bousquet J (eds) Genetics, genomics and breeding of conifers. Science Publishers, Edenbridge

    Google Scholar 

  • Ellis JR, Burke JM (2007) EST-SSRs as a resource for population genetic analyses. Heredity 99:125–132

    Article  PubMed  CAS  Google Scholar 

  • Fulton TM, Van der Hoeven R, Eannetta NT, Tanksley SD (2002) Identification, analysis, and utilization of conserved ortholog set markers for comparative genomics in higher plants. Plant Cell 14:1457–1467

    Article  PubMed  CAS  Google Scholar 

  • Futamura N, Totoki Y, Toyoda A, Igasaki T, Nanjo T, Seki M, Sakaki Y, Mari A, Shinozaki K, Shinohara K (2008) Characterization of expressed sequence tags from a full-length enriched cDNA library of Cryptomeria japonica male strobili. BMC Genomics 9:383

    Article  PubMed  Google Scholar 

  • García-Gil M (2008) Evolutionary aspects of functional and pseudogene members of the phytochrome gene family in Scots pine. J Mol Evol 67:222–232

    Article  PubMed  Google Scholar 

  • Group CPW, Hollingsworth PM, Forrest LL, Spouge JL, Hajibabaei M, Ratnasingham S, van der Bank M, Chase MW, Cowan RS, Erickson DL, Fazekas AJ, Graham SW, James KE, Kim K-J, Kress WJ, Schneider H, van AlphenStahl J, Barrett SCH, van den Berg C, Bogarin D, Burgess KS, Cameron KM, Carine M, Chacón J, Clark A, Clarkson JJ, Conrad F, Devey DS, Ford CS, Hedderson TAJ, Hollingsworth ML, Husband BC, Kelly LJ, Kesanakurti PR, Kim JS, Kim Y-D, Lahaye R, Lee H-L, Long DG, Madriñán S, Maurin O, Meusnier I, Newmaster SG, Park C-W, Percy DM, Petersen G, Richardson JE, Salazar GA, Savolainen V, Seberg O, Wilkinson MJ, Yi D-K, Little DP (2009) A DNA barcode for land plants. Proc Natl Acad Sci 106:12794–12797

    Article  Google Scholar 

  • Hamberger B, Hall D, Yuen M, Oddy C, Hamberger B, Keeling C, Ritland C, Ritland K, Bohlmann J (2009) Targeted isolation, sequence assembly and characterization of two white spruce (Picea glauca) BAC clones for terpenoid synthase and cytochrome P450 genes involved in conifer defence reveal insights into a conifer genome. BMC Plant Biol 9:106

    Article  PubMed  Google Scholar 

  • Heuertz M, De Paoli E, Kallman T, Larsson H, Jurman I, Morgante M, Lascoux M, Gyllenstrand N (2006) Multilocus patterns of nucleotide diversity, linkage disequilibrium and demographic history of Norway spruce [Picea abies (L.) Karst]. Genetics 174:2095–2105

    Article  PubMed  CAS  Google Scholar 

  • Kinlaw CS, Neale DB (1997) Complex gene families in pine genomes. Trends Plant Sci 2:356–359

    Article  Google Scholar 

  • Kinlaw CS, Ho T, Gerttula SM, Gladstone E, Harry DE, Quintana L, Baysdorfer C (1996) Gene discovery in loblolly pine through cDNA sequencing. In: Ahuja MR, Boerjan W, Neale DB (eds) Somatic cell genetics and molecular genetics of trees. Kluwer Academic Publishers, Dordrecht, pp 175–182

    Chapter  Google Scholar 

  • Knoop V, Volkmar U, Hecht J, Grewe F (2011) Mitochondrial genome evolution in the plant lineage. In: Kempken F (ed) Plant mitochondria. Springer, New York, pp 3–29

    Chapter  Google Scholar 

  • Kovach A, Wegrzyn J, Parra G, Holt C, Bruening G, Loopstra C, Hartigan J, Yandell M, Langley C, Korf I, Neale D (2010) The Pinus taeda genome is characterized by diverse and highly diverged repetitive sequences. BMC Genomics 11:420

    Article  PubMed  Google Scholar 

  • Krutovsky KV, Troggio M, Brown GR, Jermstad KD, Neale DB (2004) Comparative mapping in the Pinaceae. Genetics 168:447–461

    Article  PubMed  CAS  Google Scholar 

  • Krutovsky K, Elsik C, Matvienko M, Kozik A, Neale D (2006) Conserved ortholog sets in forest trees. Tree Genet Genomes 3:61–70

    Article  Google Scholar 

  • Lamoureux D, Peterson DG, Li W, Fellers JP, Gill BS (2005) The efficacy of Cot-based gene enrichment in wheat (Triticum aestivum L.). Genome 48:1120–1126

    Google Scholar 

  • Leitch IJ, Hanson L, Winfield M, Parker J, Bennett MD (2001) Nuclear DNA C-values complete familial representation in gymnosperms. Ann Bot 88:843–849

    Article  CAS  Google Scholar 

  • Li R, Fan W, Tian G, Zhu H, He L, Cai J, Huang Q, Cai Q, Li B, Bai Y, Zhang Z, Zhang Y, Wang W, Li J, Wei F, Li H, Jian M, Li J, Zhang Z, Nielsen R, Li D, Gu W, Yang Z, Xuan Z, Ryder OA, Leung FC-C, Zhou Y, Cao J, Sun X, Fu Y, Fang X, Guo X, Wang B, Hou R, Shen F, Mu B, Ni P, Lin R, Qian W, Wang G, Yu C, Nie W, Wang J, Wu Z, Liang H, Min J, Wu Q, Cheng S, Ruan J, Wang M, Shi Z, Wen M, Liu B, Ren X, Zheng H, Dong D, Cook K, Shan G, Zhang H, Kosiol C, Xie X, Lu Z, Zheng H, Li Y, Steiner CC, Lam TT-Y, Lin S, Zhang Q, Li G, Tian J, Gong T, Liu H, Zhang D, Fang L, Ye C, Zhang J, Hu W, Xu A, Ren Y, Zhang G, Bruford MW, Li Q, Ma L, Guo Y, An N, Hu Y, Zheng Y, Shi Y, Li Z, Liu Q, Chen Y, Zhao J, Qu N, Zhao S, Tian F, Wang X, Wang H, Xu L, Liu X, Vinar T, Wang Y, Lam T-W, Yiu S-M, Liuand S, Zhang H, Li D, Huang Y, Wang X, Yang G, Jiang Z, Wang J, Qin N, Li L, Li J, Bolund L, Kristiansen K, Wong GK-S, Olson M, Zhang X, Li S, Yang H, Wang J, Wang J (2010a) The sequence and de novo assembly of the giant panda genome. Nature 463:311–317

    Article  PubMed  CAS  Google Scholar 

  • Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K, Li S, Yang H, Wang J, Wang J (2010b) De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 20:265–272

    Article  PubMed  CAS  Google Scholar 

  • Liang C, Wang G, Liu L, Ji G, Fang L, Liu Y, Carter K, Webb J, Dean J (2007) ConiferEST: an integrated bioinformatics system for data reprocessing and mining of conifer expressed sequence tags (ESTs). BMC Genomics 8:134

    Article  PubMed  Google Scholar 

  • Liewlaksaneeyanawin C, Ritland CE, El-Kassaby YA, Ritland K (2004) Single-copy, species-transferable microsatellite markers developed from loblolly pine ESTs. TAG Theor Appl Genet 109:361–369

    Article  CAS  Google Scholar 

  • Liewlaksaneeyanawin C, Zhuang J, Tang M, Farzaneh N, Lueng G, Cullis C, Findlay S, Ritland C, Bohlmann J, Ritland K (2009) Identification of COS markers in the Pinaceae. Tree Genet Genomes 5:247–255

    Article  Google Scholar 

  • Lippert D, Zhuang J, Ralph S, Ellis DE, Gilbert M, Olafson R, Ritland K, Ellis B, Douglas CJ, Bohlmann J (2005) Proteome analysis of early somatic embryogenesis in Picea glauca. Proteomics 5:461–473

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Magbanua ZV, Orzkan S, Chouvarine P, Bartlett BD, Peterson DG (2009) BAC libraries for two distantly related conifers, loblolly pine and bald cypress. In: Plant and animal genomes XVII conference, San Diego, USA

  • Lorenz WW, Sun F, Liang C, Kolychev D, Wang H, Zhao X, Cordonnier-Pratt M-M, Pratt LH, Dean JFD (2006) Water stress-responsive genes in loblolly pine (Pinus taeda) roots identified by analyses of expressed sequence tag libraries. Tree Physiol 26:1–16

    Article  PubMed  Google Scholar 

  • Mackay J, Dean J (2011) Transcriptomics. In: Plomion C, Bousquet J (eds) Genetics, genomics and breeding of conifers. Science Publishers, Edenbridge

    Google Scholar 

  • Magbanua ZV, Ozkan S, Bartlett BD, Chouvarine P, Saski CA, Liston A, Cronn RC, Nelson CD, Peterson DG (2011) Adventures in the enormous: a 1.8 million clone BAC library for the 21.7 Gb genome of loblolly pine. PLoS One 6:e16214

    Article  PubMed  CAS  Google Scholar 

  • Miksche JP, Hotta Y (1973) DNA base composition and repetitious DNA in several conifers. Chromosoma 41:29–36

    Article  CAS  Google Scholar 

  • Morgante M, De Paoli E (2011) Toward the conifer genome sequence. In: Plomion C, Bousquet J (eds) Genetics, genomics and breeding of conifers. Science Publishers, Edenbridge

    Google Scholar 

  • Neale DB, Kremer A (2011) Forest tree genomics: growing resources and applications. Nat Rev Genet 12:111–122

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH (2006) Leafing through the genomes of our major crop plants: strategies for capturing unique information. Nat Rev Genet 7:174–184

    Article  PubMed  CAS  Google Scholar 

  • Pavy N, Parsons L, Paule C, MacKay J, Bousquet J (2006) Automated SNP detection from a large collection of white spruce expressed sequences: contributing factors and approaches for the categorization of SNPs. BMC Genomics 7:1–14

    Article  Google Scholar 

  • Ralph SG, Yueh H, Friedmann M, Aeschliman D, Zeznik JA, Nelson CC, Butterfield YSN, Kirkpatrick R, Liu J, Jones SJM, Marra MA, Douglas CJ, Ritland K, Bohlmann J (2006) Conifer defence against insects: microarray gene expression profiling of Sitka spruce (Picea sitchensis) induced by mechanical wounding or feeding by spruce budworms (Choristoneura occidentalis) or white pine weevils (Pissodes strobi) reveals large-scale changes of the host transcriptome. Plant Cell Environ 29:1545–1570

    Article  PubMed  Google Scholar 

  • Ralph S, Chun H, Kolosova N, Cooper D, Oddy C, Ritland C, Kirkpatrick R, Moore R, Barber S, Holt R, Jones S, Marra M, Douglas C, Ritland K, Bohlmann J (2008) A conifer genomics resource of 200,000 spruce (Picea spp.) ESTs and 6,464 high-quality, sequence-finished full-length cDNAs for Sitka spruce (Picea sitchensis). BMC Genomics 9:484

    Article  PubMed  Google Scholar 

  • Ritland K, Krutovsky K, Tsumura Y, Pelgas B, Bousquet J (2011) Genetic mapping in conifers. In: Plomion C, Bousquet J (eds) Genetics, genomics and breeding of conifers. Science Publishers, Edenbridge

    Google Scholar 

  • Rungis D, Bérubé Y, Zhang J, Ralph S, Ritland CE, Ellis BE, Douglas C, Bohlmann J, Ritland K (2004) Robust simple sequence repeat (SSR) markers for spruce (Picea spp.) from expressed sequence tags (ESTs). Theor Appl Genet 109:1283–1294

    Article  PubMed  CAS  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du F, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, Chen W, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He R, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin J, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren L, Wei S, Kumari S, Faga B, Levy MJ, McMahan L, Van Buren P, Vaughn MW, Ying K, Yeh C-T, Emrich SJ, Jia Y, Kalyanaraman A, Hsia A-P, Barbazuk WB, Baucom RS, Brutnell TP, Carpita NC, Chaparro C, Chia J-M, Deragon J-M, Estill JC, Fu Y, Jeddeloh JA, Han Y, Lee H, Li P, Lisch DR, Liu S, Liu Z, Nagel DH, McCann MC, SanMiguel P, Myers AM, Nettleton D, Nguyen J, Penning BW, Ponnala L, Schneider KL, Schwartz DC, Sharma A, Soderlund C, Springer NM, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber TK, Yang L, Yu Y, Zhang L, Zhou S, Zhu Q, Bennetzen JL, Dawe RK, Jiang J, Jiang N, Presting GG, Wessler SR, Aluru S, Martienssen RA, Clifton SW, McCombie WR, Wing RA, Wilson RK (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  PubMed  CAS  Google Scholar 

  • Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26:1135–1145

    Article  PubMed  CAS  Google Scholar 

  • Simola LK, Santanen A (1990) Improvement of nutrient medium for growth and embryogenesis of megagametophyte and embryo callus lines of Picea abies. Physiol Plant 80:27–35

    Article  CAS  Google Scholar 

  • Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM, Birol İ (2009) ABySS: a parallel assembler for short read sequence data. Genome Res 19:1117–1123

    Article  PubMed  CAS  Google Scholar 

  • Springer NM, Xu X, Barbazuk WB (2004) Utility of different gene enrichment approaches toward identifying and sequencing the maize gene space. Plant Physiol 136:3023–3033

    Article  PubMed  CAS  Google Scholar 

  • Tulsieram LK, Glaubitz JC, Kiss G, Carlson JE (1992) Single tree genetic linkage mapping in conifers using haploid DNA from megagametophytes. Nat Biotechnol 10:686–690

    Article  CAS  Google Scholar 

  • von Aderkas P, Anderson P (1993) Aneuploidy and polyploidization in haploid tissue cultures of Larix decidua. Physiol Plant 88:73–77

    Article  Google Scholar 

  • Warren RL, Sutton GG, Jones SJM, Holt RA (2007) Assembling millions of short DNA sequences using SSAKE. Bioinformatics 23:500–501

    Article  PubMed  CAS  Google Scholar 

  • Wen W, Mei H, Feng F, Yu S, Huang Z, Wu J, Chen L, Xu X, Luo L (2009) Population structure and association mapping on chromosome 7 using a diverse panel of Chinese germplasm of rice (Oryza sativa L.). Theor Appl Genet 119:459–470

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

I thank David Neale and Bert Abbott for their comments on drafts, John MacKay for discussions about conifer genomics, Steven Jones and Inanc Birol for teaching me the latest about sequence assembly, Carol Ritland for support at both work and home, and Genome BC/ Genome Canada for their support of conifer genome projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kermit Ritland.

Additional information

Communicated by A. Abbott

A contribution to the Special Issue “The genomes of the giants: a walk through the forest of tree genomes”

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ritland, K. Genomics of a phylum distant from flowering plants: conifers. Tree Genetics & Genomes 8, 573–582 (2012). https://doi.org/10.1007/s11295-012-0497-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-012-0497-4

Keywords

Navigation