Skip to main content
Log in

Fate of transgenes in the forest tree genome

  • Opinion Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

During the last two decades, genetic engineering (GE) has been progressing at a steady pace in the forest trees. Transgenic trees carrying a variety of different transgenes have been produced, and are undergoing confined field trials in the world. However, there are questions regarding stability of transgene expression, and transgene escape that need to be addressed in the long-lived forest trees. Although relatively stable transgene expression has been reported for several target traits, including herbicide resistance, insect resistance, and lignin reduction in the vegetative propagules of several forest tree species, there were still unintended unstable events in transgenic plants. Long-term stability of transgene expression involved in these traits and others affecting yield (impacting growth) would be desirable in the vegetative propagules, and also in the generative progeny of the forest trees. Transgene escape through pollen, seed, and vegetative propagules from GE trees to native forest populations, although inevitable, remains an important regulatory issue. However, it may be possible to manage/minimize the risk of transgene spread via isolation in confined areas, and use of incompatible genotypes of feral tree populations in the vicinity of transgenic forest trees. Therefore, it is desirable to produce genetically stable transgenic trees, and have biocontainment measures in place for testing and deployment of the GE forest trees. Toward these goals (transgene stability and containment), innovative biotech strategies are being actively pursued, with reasonable success, in forest trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahuja MR (1997) Transgenes and genetic instability. In: Klopfenstein NB, Chun WYW, Kim M-S, Ahuja MR (eds) Micropropagation and genetic engineering and molecular genetics of Populus. Tech. Rep. RM-GTR-297. USDA Forest Service, Rocky Mountain Research Station, Fort Collins, pp 90–100

    Google Scholar 

  • Ahuja MR (1998) Somaclonal genetics of forest trees. In: Jain SM, Brar DS, Ahloowalia BS (eds) Somaclonal variation and induced mutations in crop improvement. Kluwer Academic, Dordrecht, pp 105–121

    Google Scholar 

  • Ahuja MR (2000) Genetic engineering in forest trees: state of the art and future perspectives. In: Jain SM, Minocha SC (eds) Molecular biology of woody plants, vol 1. Kluwer Academic, Dordrecht, pp 31–49

    Google Scholar 

  • Al-Ahmad H, Dwyer J, Moloney M, Gressel J (2006) Mitigation of establishment of Brassica napus transgenes in volunteers using a tandem construct containing a selectively unfit gene. Plant Biotechnol J 4:7–21

    PubMed  CAS  Google Scholar 

  • Allen GC, Spiker S, Thompson WF (2000) Use of matrix attachment regions (MARs) to minimize transgenic silencing. Plant Mol Biol 43:361–376

    PubMed  CAS  Google Scholar 

  • Baack EJ (2006) Engineered crops: transgenes go wild. Curr Biol 16:R583–R584

    PubMed  CAS  Google Scholar 

  • Batista R, Saibo N, Lourenço T, Oliveira MM (2008) Microarray analyses reveal that plant mutagenesis may induce more transcritomic changes that transgenic insertion. Proc Natl Acad Sci USA 105:3640–3645

    PubMed  CAS  Google Scholar 

  • Baudo MM, Lyons R, Powers S, Paston GS, Edwards KJ, Holdworth MJ, Shewry PR (2006) Transgenesis has less impact on the transcriptome of wheat grain than conventional breeding. Plant Biotech J 4:369–380

    CAS  Google Scholar 

  • Birch RG (1997) Plant transformation: problems and strategies for practical application. Annu Rev Plant Physiol Mol Biol 48:297–326

    CAS  Google Scholar 

  • Bock R (2006) Plastid biotechnology: prospects for herbicide and insect resistance, metabolic engineering and molecular farming. Curr Opin Biotechnol 17:1–7

    Google Scholar 

  • Boerjan W (2005) Biotechnology and domestication of forest trees. Curr Opin Biotechnol 16:159–166

    PubMed  CAS  Google Scholar 

  • Bonfils AC (2006) Canada’s regulatory approach. In: Williams GC (ed) Landscapes, genomics and transgenic conifers. Springer, Dordrecht, pp 229–243

    Google Scholar 

  • Bradford KJ, Deynze AV, Gutterson N, Parrott W, Strauss SH (2005) Regulating transgenic crops sensibly: lessons from plant breeding, biotechnology and genomics. Nat Biotechnol 23:439–444

    PubMed  CAS  Google Scholar 

  • Bregitzer P, Tonks D (2003) Inheritance and expression of transgenes in barley. Crop Sci 43:4–12

    CAS  Google Scholar 

  • Brunner AM, Li J, DiFazio SP, Schevchenko O, Montgomery BE, Mohamed R, Wie H, Ma C, Elias AA, Van Wormer K, Strauss SH (2007) Genetic containment of forest plantations. Tree Genet Genomes 3:75–100

    Google Scholar 

  • Burke JM, Rieseberg LH (2003) Fitness effects of transgenic disease in sunflower. Science 300:1250

    PubMed  CAS  Google Scholar 

  • Busov VB, Brunner AM, Strauss SH (2008) Genes for control of plant stature and form. New Phytol 177:589–607

    PubMed  CAS  Google Scholar 

  • Butaye KMJ, Cammue BPA, Delauré SL, De Bolle MFC (2005) Approaches to minimize variation in transgenic expression in plants. Mol Breed 16:79–91

    Google Scholar 

  • Campbell MM, Brunner AM, Jones HM, Strauss SH (2003) Forestry’s fertile crescent: the application of biotechnology to forest trees. Plant Biotechnol J 1:141–154

    PubMed  CAS  Google Scholar 

  • Cervera M, Piña JA, Juárez J, Navarro L, Peña L (2000) A broad exploration of transgenic citrus: stability of gene expression and phenotype. Theor Appl Genet 100:670–677

    CAS  Google Scholar 

  • Chapman MA, Burke JM (2006) Letting the gene out of the bottle: populations genetics of genetically modified crops. New Pyhtol 170:429–443

    CAS  Google Scholar 

  • Charest PJ, Michel MF (1991) Basics of plant genetic engineering and its potential applications to tree species. Information Report Pl-X-104. Petawawa National Forestry Institute, Forestry Canada, pp 1–48

  • Daniell H (2002) Molecular strategies for gene containment in transgenic crops. Nat Biotechnol 20:581–586

    PubMed  CAS  Google Scholar 

  • De Buck S, Peck I, De Wilde C, Marjanac G, Nolf J, De Paepe A, Depicker A (2007) Generation of single-copy T-DNA transformants in Arabidopsis by CRE/loxP recombination-mediated resolution system. Plant Physiol 145:1171–1182

    PubMed  Google Scholar 

  • DiFazio SP, Slavov GT, Burczyk J, Leonardi S, Strauss SH (2004) Gene flow from tree plantations and implications for transgenic risk assessment. In: Walter C, Carson M (eds) Plantation forest biotechnology for the 21st century. Research Signpost, Travandrum, Kerala, pp 405–422

    Google Scholar 

  • Doty SL, James CA, Moore AL et al (2007) Enhance phytoremediation of volatile environmental pollutants with transgenic trees. Proc Nat Acad Sci USA 104:16816–16821

    PubMed  CAS  Google Scholar 

  • Ellstrand NC (2003) Current knowledge of gene flow in plants: implications for transgenic flow. Philos Trans R Soc Lond B 358:1163–1170

    Google Scholar 

  • Farnum P, Lucier A, Meilan R (2007) Ecological and population genetics research imperatives for transgenic trees. Tree Genet Genomes 3:119–133

    Google Scholar 

  • Fillatti JJ, Selmer J, McCown B, Haissig B, Comai L (1987) Agrobacterium mediated transformation and regeneration of Populus. Mol Gen Genet 206:192–199

    CAS  Google Scholar 

  • Finnegan J, McElroy D (1994) Transgene inactivation: plants fight back. Biotechnology 12:883–888

    Google Scholar 

  • Finstad K, Bonfils AC, Shearer W, Macdonald P (2007) Trees with novel traits in Canada: regulation and related scientific issues. Tree Genet Genomes 3:135–139

    Google Scholar 

  • Flachowsky H, Hanke HV, Peil A, Strauss SH, Fladung M (2009) A review on transgenic approaches to accelerate breeding of woody plants. Plant Breed 128:217–226

    CAS  Google Scholar 

  • Fladung M (1999) Gene stability in transgenic aspen (Populus): I. Flanking DNA sequences and T-DNA structure. Mol Gen Genet 260:574–581

    PubMed  CAS  Google Scholar 

  • Fladung M, Kumar S, Ahuja MR (1997) Genetic transformation with different chimeric gene constructs: transformation efficiency and molecular analysis. Transgenic Res 6:111–121

    CAS  Google Scholar 

  • Fladung M, Schenk TMH, Polak O, Becker D (2010) Elimination of marker genes and targeted integration via FLP/FRT recombination system from yeast in hybrid aspen (Populus tremula L × P. tremuloides Michx.). Tree Genet Genomes 6:205–217

    Google Scholar 

  • Gidoni D, Srivastava V, Carmi M (2008) Site-specific excision-recombination strategies for elimination of undesirable transgenes from crop plants. In Vitro Cell Dev Biol Plant 44:457–467

    CAS  Google Scholar 

  • Gressel J (1999) Tandem constructs preventing the rise of super weeds. Trends Biotechnol 17:361–366

    PubMed  CAS  Google Scholar 

  • Groover AT (2007) Will genomics guide a greener forest biotechnology? Trends Plant Sci 12:234–238

    PubMed  CAS  Google Scholar 

  • Halfhill MD, Sutherland JP, Moon HS, Poppy GM, Warwick SI, Weissinger AK, Rufty TW, Raymer PL, Stewart CN (2005) Growth, productivity, and competitiveness of introgressed weedy Brassica rapa hybrids selected for the presence of Bt cry1Ac and GFP transgenes. Mol Ecol 14:3177–3189

    PubMed  CAS  Google Scholar 

  • Halpin C (2005) Gene stacking in transgenic plants: the challenge for 21st century plant biotechnology. Plant Biotechnol J 3:141–155

    PubMed  CAS  Google Scholar 

  • Halpin C, Boerjan W (2003) Stacking transgenes in forest trees. Trends Plant Sci 8:363–365

    PubMed  CAS  Google Scholar 

  • Halpin C, Thain SC, Tilston EL, Guiney E, Lapierre C, Hopkin DW (2007) Ecological impacts of trees with modified lignin. Tree Genet Genomes 3:101–110

    Google Scholar 

  • Halweg C, Thompson WF, Spiker S (2005) The Rb7 matrix attachment region increases the likelihood and magnitude of transgenic expression in tobacco cells: a flow cytometric study. Plant Cell 17:418–429

    PubMed  CAS  Google Scholar 

  • Hawkins S, Leplé JC, Cornu D, Jouanin L, Pilate G (2003) Stability of transgenic expression in poplar: a model forest tree species. Ann For Sci 60:427–438

    Google Scholar 

  • Herschbach C, Kopriva S (2002) Transgenic trees as tools in tree and plant physiology. Trees 16:250–261

    CAS  Google Scholar 

  • Hinchee M, Rottmann W, Mullinaz L, Zhang C, Chang S, Cunningham M, Pearson L, Nehra N (2009) Short-rotation woody crops for bioenergy and biofuel applications. In Vitro Cell Dev Biol Plant 45:619–629

    PubMed  Google Scholar 

  • Hoenicka H, Fladung M (2006a) Genomic instability in woody plants derived from genetic engineering. In: Fladung M, Ewald D (eds) Transgenesis: recent developments. Springer Verlag, Berlin, pp 301–321

    Google Scholar 

  • Hoenicka H, Fladung M (2006b) Biosafety in Populus spp. and other forest trees: from non-native species to taxa derived from traditional breeding and genetic engineering. Trees 20:131–144

    Google Scholar 

  • Iglesias VA, Moscone EA, Papp I, Neuhuber F, Michalowshi S, Phelan T, Spiker S, Matzke M, Matzke AJM (1997) Molecular and cyogenetic analysis of stably and unstably expressed transgenic loci in tobacco. Plant Cell 9:1251–1264

    PubMed  CAS  Google Scholar 

  • James C (2008) Global status of commercialized Biotech/GM crops 2008. The International Service for the Acquisition of Agri-biotech Applications (ISAAA Brief # 39), Ithaca, NY. http://www.isaaa.org

  • Jing ZP, Gallardo F, Pascual MB, Sampalo P, Romero J, Torres de Navarra A, Canovas DM (2004) Improved growth in a field trial of transgenic hybrid poplar overexpressing glutamine synthetase. New Phytol 164:137–145

    CAS  Google Scholar 

  • Kausch AP, Hague J, Oliver M, Daniell H, Mascia P, Watrud LS, Stewart CN (2010) Transgenic perennial biofuel feedstocks and strategies for bioconfinement. Biofuels 1:163–176

    CAS  Google Scholar 

  • Kikuchi A, Watanabe K, Tanaka Y, Kamada H (2008) Recent progress on environmental biosafety assessment of genetically modified trees and floricultural plants in Japan. Plant Biotechnol 25:9–15

    Google Scholar 

  • Kumar S, Fladung M (2001) Gene stability in transgenic aspen (Populus): II. Molecular characterization of variable expression of transgenic in wild and hybrid aspen. Planta 213:731–740

    PubMed  CAS  Google Scholar 

  • Kuparinen A, Schurr F (2007) A flexible modeling framework linking the spatio-temporal dynamics of plant genotypes and populations: applications to gene flow from transgenic forests. Ecol Modell 202:476–486

    Google Scholar 

  • Kuparinen A, Schurr F (2008) Assessing the risk of gene flow from genetically modified trees carrying mitigation transgenes. Biol Invasions 10:281–290

    Google Scholar 

  • Lachance D, Hamel L-P, Pelltier E, Valéro J, Bernier-Cardou M, Chapman K, Van Frankenhuyzen K, Séguin A (2007) Expression of a Bacillus thuringiensis cry1Ab gene in transgenic white spruce and its efficacy against the spruce budworm (Choristoneura fumiferana). Tree Genet Genomes 3:153–167

    Google Scholar 

  • Lännenpää M, Hassinen M, Ranki A, Hölttä-Vuora M, Lemmetyinen J, Keinonnen K, Sopanen T (2005) Prevention of flower development in birch and other plants using a BPFULLI::BARNASE construct. Plant Cell Rep 24:69–78

    PubMed  Google Scholar 

  • Larkin PJ, Scowcroft WR (1981) Somaclonal variation—a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214

    Google Scholar 

  • Lemmetyinen J, Keinonen K, Sopanen T (2004) Prevention of flowering of a tree, silver birch. Mol Breed 13:243–249

    CAS  Google Scholar 

  • Leple J, Dauwe R, Morreel K et al (2007) Downregulation of cinnamoyl-coenzyme A reductase in poplar: multiple-level phenotyping reveals effects on cell wall polymer metabolism and structure. Plant Cell 19:3669–3691

    PubMed  CAS  Google Scholar 

  • Li L, Zhou Y, Cheng X, Sun J, Marita JM, Ralph J, Chiang VL (2003) Combinatorial modification of multiple lignin traits in trees through multigene cotransformation. Proc Natl Acad Sci USA 100:4939–4944

    PubMed  CAS  Google Scholar 

  • Li J, Meilan R, Ma C, Barish M, Strauss SH (2008a) Stability of herbicide resistance over eight years of coppice field-grown, genetically engineered poplars. West J Appl For 23:89–93

    Google Scholar 

  • Li J, Brunner AM, Meilan R, Strauss SH (2008b) Matrix attachment region elements have small and variable effects on transgenic expression and stability in field-grown Populus. Plant Biotechnol J 6:887–896

    PubMed  CAS  Google Scholar 

  • Li J, Brunner AM, Schevchenko O, Meilan R, Ma C, Skinner JS, Strauss SH (2008c) Efficient and stable transgenic suppression via RNAi in field-grown poplars. Transgenic Res 17:679–694

    PubMed  CAS  Google Scholar 

  • Li J, Brunner AM, Meilan R, Strauss SH (2009) Stability of transgenes in trees: expression of two reporter genes in poplar over three field seasons. Tree Physiol 29:299–312

    PubMed  CAS  Google Scholar 

  • Lu B-R (2003) Transgene containment by molecular means - is it possible and cost effective? Environ Biosafety Res 2:3–8

    Google Scholar 

  • Luo R, Duan H, Zhao D, Zheng X, Deng W, Chen Y, Stewart CN, McAvoy R, Jiang X, Wu Y, He A, Pei Y, Li Y (2007) “GM-gene deletor”: fused loxP-FRT recognition sequences dramatically improve the efficiency of FLP or GRF recombinase on transgenic excision from pollen and seed of tobacco plants. Plant Biotechnol J 5:263–274

    PubMed  CAS  Google Scholar 

  • Mansoor S, Amin I, Hussain M, Zafar Y, Briddon RW (2006) Engineering novel traits in plants through RNA interference. Trends Plant Sci 11:559–565

    Google Scholar 

  • Marvier M, Von Acker RC (2005) Can crop transgenes be kept on a leash? Front Ecol Environ 3:99–106

    Google Scholar 

  • McHughen A, Smyth S (2008) US regulatory system for genetically modified [genetically modified organism (GMO), rDNA or transgenic] crop cultivars. Plant Biotechnol J 6:2–12

    PubMed  Google Scholar 

  • Meilan R, Ellis D, Pilate G, Bruner AM, Skinner J (2004) Accomplishments and challenges in genetic engineering of forest trees. In: Strauss SH, Bradshaw HD (eds) The bioengineered forest challenges for science and society. Resources for the Future, Washington, DC, pp 36–51

    Google Scholar 

  • Meyer P, Linn F, Heidmann I, Meyer H, Niedenhof I, Saedler H (1992) Exogenous and environmental factors influence 35S promoter methylation of maize A1 gene construct in transgenic petunia and its colour phenotype. Mol Gen Genet 231:345–352

    PubMed  CAS  Google Scholar 

  • Meza TJ, Kamfjord D, Hakelien A, Evans I, Godager LH, Mandal A, Jakobsen KS, Aalen RB (2001) The frequency of silencing in Arabidopsis thaliana varies highly between progeny of siblings and can be influenced by environmental factors. Transgenic Res 10:53–67

    PubMed  CAS  Google Scholar 

  • Naqvi S, Zhu C, Ferre G, Ramessar K, Bassie L, Breitenbach J, Conesa DP, Ros G, Sandmann G, Capell T, Christou P (2009) Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proc Natl Acad Sci USA 106:7762–7767

    PubMed  CAS  Google Scholar 

  • Okumura S, Sawada M, Park YW, Hayashi T, Shimamura M, Takase H, Tomizawa K (2006) Transformation of poplar (Popolus alba) plastids and expression of foreign proteins in trees. Transgenic Res 15:637–644

    PubMed  CAS  Google Scholar 

  • Peña L, Séguin A (2001) Recent advances in genetic transformation of trees. Trends Biotechnol 19:500–506

    Google Scholar 

  • Pilate G, Guiney E, Holt K, Petit-Conil M, Lapierre C, Leplé J-C, Pollet B, Mila I, Webster EA, Marstorp HG, Hopkins DW, Jouanin L, Boerjan W, Schuch W, Cornu D, Halpin C (2002) Field and pulping performances of transgenic trees with altered lignification. Nat Biotechnol 20:607–612

    PubMed  CAS  Google Scholar 

  • Reichman JR, Watrud LS, Lee EH, Burdick CA, Bollman MA, Strom MJ, King GA, Mallory-Smith C (2006) Establishment of transgenic herbicide resistant creeping bentgrass (Agrostis stolonifera L.) in non-agronomic habitats. Mol Ecol 15:4243–4255

    PubMed  CAS  Google Scholar 

  • Robischon M (2006) Field trials with transgenic trees—state of art and development. In: Fladung M, Ewald D (eds) Tree transgenesis: recent developments. Springer Verlag, Berlin, pp 3–23

    Google Scholar 

  • Rooke L, Steele SH, Barcelo P, Shewry PR, Lazzeri PA (2003) Transgenic inheritance, segregation and expression in bread wheat. Euphytica 129:301–309

    CAS  Google Scholar 

  • Ruf S, Karcher D, Bock R (2007) Determining the transgenic containment level provided by chloroplast transformation. Proc Natl Acad Sci USA 104:6998–7002

    PubMed  CAS  Google Scholar 

  • Schoen DL, Reichman JR, Ellstrand NC (2008) Transgene escape monitoring, population genetics, and the law. Bioscience 58:71–77

    Google Scholar 

  • Sederoff R (2007) Regulatory science in forest biotechnology. Tree Genet Genomes 3:71–74

    Google Scholar 

  • Sedjo RA (2006) GMO Trees: substantial promise but serious obstacles to commercialization. Silvae Genet 55:241–252

    Google Scholar 

  • Seppänen S-K, Syrjälä L, Von Weissenberg K, Teeri TH, Paajanen L, Pappinen A (2004) Antifungal activity of stilbenes in vitro bioassays and in transgenic Populus expressing a gene encoding pinosylvin synthase. Plant Cell Rep 22:584–593

    PubMed  Google Scholar 

  • Shewry PR, Baudo M, Lovegrove A, Powers S, Napier JA, Ward JL, Baker JM, Beale MH (2007) Are GM and conventionally bred cereals really different? Trends Food Sci Technol 18:201–209

    CAS  Google Scholar 

  • Skinner JS, Meilan R, Ma C, Strauss SH (2003) The Populus PTD promoter imparts floral-predeterminant expression and enables high levels of floral-organ ablation in Populus, Nicotiana and Arabidopsis. Mol Breed 12:119–132

    CAS  Google Scholar 

  • Slavov GT, Leonardi S, Burczyk J, Adams WT, Strauss SH (2009) Extensive pollen flow in two ecologically contrasting populations of Populus trichocarpa. Mol Ecol 18:357–373

    PubMed  CAS  Google Scholar 

  • Smouse PE, Robledo-Arnuncio JJ, González-Martínez SC (2007) Implications of natural propagule flow for containment of genetically modifies trees. Tree Genet Genomes 3:141–152

    Google Scholar 

  • Snow AA, Pilson D, Rieseberg LH, Paulson MJ, Pleskac R, Reagon MR, Wolf DE, Selbo SM (2003) A Bt gene reduces herbivory and enhances fecundity in wild sunflower. Ecol Appl 13:279–286

    Google Scholar 

  • Srivastava V, Ariza-Netto M, Wilson AJ (2004) Cre-mediated site-specific gene integration for consistent transgenic expression in rice. Plant Biotechnol J 2:169–179

    PubMed  CAS  Google Scholar 

  • Stam M, Mol JNM, Kooter JM (1997) The silence of genes in transgenic plants. Ann Bot 79:3–12

    CAS  Google Scholar 

  • Strauss SH (2003) Genomics, genetic engineering, and domestication of crops. Science 300:61–62

    PubMed  CAS  Google Scholar 

  • Strauss SH, Brunner AM (2004) Tree biotechnology in the twenty-first century—transforming trees in the light of comparative genomics. In: Strauss SH, Bradshaw HD (eds) The bioengineered forest challenges for science and society. Resources for the Future, Washington, DC, pp 76–97

    Google Scholar 

  • Strauss SH, Rottmann WH, Brunner AM, Sheppard LA (1995) Genetic engineering of reproductive sterility in forest trees. Mol Breed 1:5–26

    CAS  Google Scholar 

  • Strauss SH, Brunner AM, Busov VB, Ma C, Meilan R (2004) Ten lessons from 15 years of transgenic poplar research. Forestry 77:455–465

    Google Scholar 

  • Strauss SH, Schmitt M, Sedjo R (2009a) Forest scientists views on regulatory obstacles to research and development of transgenic forest biotechnology. J For 107:350–357

    Google Scholar 

  • Strauss SH, Tan H, Boerjan W, Sedjo R (2009b) Strangled at birth? Forest biotechnology and the convention on biological diversity. Nat Biotechnol 27:519–527

    PubMed  CAS  Google Scholar 

  • Tang W, Newton RJ (2003) Genetic transformation of conifers and its application in forest biotechnology. Plant Cell Rep 22:1–15

    PubMed  CAS  Google Scholar 

  • Vacher C, Weis AE, Herman D, Kossler T, Young C, Hochberg ME (2004) Impact of ecological factors on initial invasion of Bt transgenic into wild populations of birdseed rape (Brassica rapa). Theor Appl Genet 109:806–814

    PubMed  Google Scholar 

  • Vain P, James VA, Worland B, Snape JW (2002) Transgene behaviour across two generations in a large random populations of transgenic rice plants produced by particle bombardment. Theor Appl Genet 105:878–889

    PubMed  CAS  Google Scholar 

  • Van Frankenhuyzen K, Beardmore T (2004) Current status and environmental impacts of transgenic forest trees. Can J For Res 34:1163–1180

    Google Scholar 

  • Vanholme R, Moreel K, Ralph J, Boerjan W (2008) Lignin engineering. Curr Opin Plant Biol 11:1–8

    Google Scholar 

  • Verma D, Daniell H (2007) Chloroplast vector systems for biotechnology applications. Plant Physiol 145:1129–1143

    PubMed  CAS  Google Scholar 

  • Wang L, Han Y, Hu J (2004) Transgenic forest trees for insect resistance. In: Kumar S, Fladung M (eds) Molecular genetics and breeding of forest trees. Haworth, Binghamton, pp 243–261

    Google Scholar 

  • Warwick SI, Légère A, Simard MJ, James J (2008) Do escaped transgenes persist in nature? The case of an herbicide resistance transgenic in a weedy Brassica rapa population. Mol Ecol 17:1387–1395

    PubMed  CAS  Google Scholar 

  • Watrud LS, Lee EH, Fairbrother A, Burdick C, Reichman JR, Bollman M, Storm M, King G, Van de Water PK (2004) Evidence for landscape-level pollen-mediated gene flow from genetically modified creeping bentgrass with CP4 EPSPS as a marker. Proc Natl Acad Sci USA 101:14533–14538

    PubMed  CAS  Google Scholar 

  • Watson JM, Fusaro AF, Wang M, Waterhouse PM (2005) RNA silencing platforms in plants. FEBS Lett 579:5982–5987

    PubMed  CAS  Google Scholar 

  • Wei H, Meilan R, Brunner AM, Skinner JS, MA C, Strauss SH (2006) Transgene sterility in Populus: expression properties of the poplar PTLF, Agrobacterium NOS and two minimal 35S promoters in vegetative tissues. Tree Physiol 26:401–410

    PubMed  Google Scholar 

  • Wei H, Meilan R, Brunner AM, Skinner JS, Ma C, Gandhi HT, Strauss SH (2007) Field trial detect incomplete barstar attenuation of vegetative cytotoxicity in Populus trees containing a poplar LEAFY promoter::barnase sterility transgenic. Mol Breed 19:69–85

    CAS  Google Scholar 

  • White TL, Adams WT, Neale DB (2007) Forest genetics. CABI, Cambridge

    Google Scholar 

  • Williams CG (2006) Opening Pandora’s box: governance for genetically modified forests. ISB News Rep (January 2006), pp 1–4

  • Williams CG, Davis BH (2005) Rate of transgenic spread via long-distance dispersal in Pinus taeda. For Ecol Manage 217:95–102

    Google Scholar 

  • Yin Z, Plader W, Malepszy S (2004) Transgene inheritance in plants. J Appl Genet 45:127–144

    PubMed  Google Scholar 

  • Zapiola ML, Campbell CK, Butler MD, Mallroy-Smith CA (2008) Escape and establishement of transgenic glyphosate-resistant creeping bentgrass Agrostis stolonifera in Oregon, USA: a 4-year study. J Appl Ecol 45:486–494

    Google Scholar 

  • Zhu C, Naqvi S, Breitenbach J, Sandmann G, Christou P, Capell T (2008) Combinatorial genetic transformation generates a library of metabolic phenotypes for carotenoid pathway in maize. Proc Natl Acad Sci USA 105:18232–18237

    PubMed  CAS  Google Scholar 

  • Züghart W, Benzler A, Berhorn F, Sukopp U, Graef F (2008) Determining indicators, methods and sites for monitoring potential adverse effects of genetically modified plants to the environment: the legal and conceptual framework for implementation. Euphytica 164:845–852

    Google Scholar 

Download references

Acknowledgements

I thank the Institute of Forest Genetics, USDA Forest Service, and the Department of Plant Sciences, University of California, Davis, for facilities. I also thank Dave Neale and anonymous reviewers for constructive suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Raj Ahuja.

Additional information

Communicated by W. Boerjan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahuja, M.R. Fate of transgenes in the forest tree genome. Tree Genetics & Genomes 7, 221–230 (2011). https://doi.org/10.1007/s11295-010-0339-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-010-0339-1

Keywords

Navigation