Skip to main content
Log in

Genetic containment of forest plantations

  • Review
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Dispersal of pollen, seeds, or vegetative propagules from intensively bred, exotic, or recombinant DNA modified forest plantations may cause detrimental or beneficial ecological impacts on wild or managed ecosystems. Insertion of genes designed to prevent or substantially reduce dispersal could reduce the risk and extent of undesired impacts. Containment measures may also be required by law or marketplace constraints, regardless of risks or benefits. We discuss: (1) the context for when genetic containment or mitigation systems may be needed; (2) technology approaches and mechanisms; (3) the state of knowledge on genes/genomics of sexual reproduction in forest trees; (4) stability of transgene expression during vegetative growth; (5) simulation studies to define the level of containment needed; and (6) needed research to deliver effective containment technologies. We illustrate progress with several examples from our research on recombinant DNA modified poplars. Our simulations show that even partial sterility can provide very substantial reductions in gene flow into wild trees. We conclude that it is impossible to define the most effective containment approaches, nor their reliability, based on current genomic knowledge and technological tools. Additional genomic and technological studies of a wide variety of options are needed. Studies in field environments are essential to provide data relevant to ecological analysis and regulatory decisions and need to be carried out in phylogenetically diverse representatives of the economically most important taxa of forest trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. GE or genetically engineered, genetically modified, or transgenic organisms, as used in the paper, are defined as those which have been modified using recombinant DNA and asexual gene transfer methods—regardless of the source of the DNA employed.

References

  • Al-Ahmad H, Galili S, Gressel J (2004) Tandem constructs to mitigate transgene persistence: tobacco as a model. Mol Ecol 13:697–710

    PubMed  CAS  Google Scholar 

  • Albert VA, Soltis DE, Carlson JE, Farmerie WG, Wall PK, Ilut DC, Solow TM, Mueller LA, Landherr LL, Hu Y, Buzgo M, Kim S, Yoo MJ, Frohlich MW, Perl-Treves R, Schlarbaum SE, Bliss BJ, Zhang X, Tanksley SD, Oppenheimer DG, Soltis PS, Ma H, DePamphilis CW, Leebens-Mack JH (2005) Floral gene resources from basal angiosperms for comparative genomics research. BMC Plant Biol 5:5

    PubMed  Google Scholar 

  • Albertsen M, Huffman G (2002) Biotin-binding compounds for induction of sterility in plants. United States Patent and Trademark Office 20020129399

  • Baudot G, Garcia D, Hodge R, Perez P (2001) DNA sequences coding for a protein conferring male sterility. United States Patent and Trademark Office 6,207,883

  • Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363

    PubMed  CAS  Google Scholar 

  • Belostotsky DA, Meagher RB (1996) A pollen-, ovule-, and early embryo-specific poly (A) binding protein from Arabidopsis complements essential functions in yeast. Plant Cell 8:1261–1275

    PubMed  CAS  Google Scholar 

  • Bern-d-Souza RB, Grossi de Sa MF, Ellis DD, McCown BH (2000) A rat ribonuclease fused to late cotton pollen promoter severely reduces pollen viability in tobacco plants. Genet Mol Biol 23:435–443

    CAS  Google Scholar 

  • Bettany AJE, Dalton S, Timms E, Morris P (1998) Stability of transgene expression during vegetative propagation of protoplast-derived tall fescue (Festuca arundinacea Schreb) J Exp Bot 49:1797–1804

    CAS  Google Scholar 

  • Boettiger S, Bennett AB (2006) Bayh-Dole: if we knew then what we know now. Nat Biotechnol 24:320–323

    PubMed  CAS  Google Scholar 

  • Böhlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, Strauss SH, Nilsson O (2006) The conserved CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312:1040–1043

    PubMed  Google Scholar 

  • Borkowska M, Kleczkowski K, Pawelczak A, Wielgat B (1995) Transformation of diploid potato with an Agrobacterium tumefaciens binary vector system. II. Stability of transformation in tubers, micropropagated and greenhouse grown plants. Acta Physiol Plant 17:275–280

    Google Scholar 

  • Borner R, Kampmann G, Chandler J, Gleibner R, Wisman E, Apel K, Melzer S (2000) A MADS domain gene involved in the transition to flowering in Arabidopsis. Plant J 24:591–599

    PubMed  CAS  Google Scholar 

  • Boss PK, Bastow RM, Mylne JS, Dean C (2004) Multiple pathways in the decision to flower: enabling, promoting, and resetting. Plant Cell 16:18–31

    Google Scholar 

  • Bradford K, Van Deynze A, Gutterson N, Parrott W, Strauss SH (2005) Regulating transgenic crops sensibly: lessons from plant breeding, biotechnology and genomics. Nat Biotechnol 23:439–444

    PubMed  CAS  Google Scholar 

  • Bradshaw HD Jr, Stettler RF (1993) Molecular genetics of growth and development in Populus. I. Triploidy in hybrid poplars. Theor Appl Genet 86:301–307

    Google Scholar 

  • Brenner ED, Katari MS, Stevenson DW, Rudd SA, Douglas AW, Moss WN, Twigg RW, Runko SJ, Stellari GM, McCombie WR, Coruzzi GM (2005) EST analysis in Ginkgo biloba: an assessment of conserved developmental regulators and gymnosperm specific genes. BMC Genomics 6:143

    PubMed  Google Scholar 

  • Bridges I, Bright S, Greenland A, Schuch W (2001) Plant gene construct encoding a protein capable of disrupting the biogenesis of viable pollen. United States Patent and Trademark Office 6,172,279

  • Brown G (2002) Method for enhancement of naturally occurring cytoplasmic male sterility and for restoration of male fertility and uses thereof in hybrid crop production. United States Patent and Trademark Office 20020133851, 2 patents

  • Brunner AM, Nilsson O (2004) Revisiting tree maturation and floral initiation in the poplar functional genomics era. New Phytol 164:43–51

    CAS  Google Scholar 

  • Brunner AM, Rottmann WH, Sheppard LA, Krutovskii K, DiFazio SP, Leonardi S, Strauss SH (2000) Structure and expression of duplicate AGAMOUS orthologues in poplar. Plant Mol Biol 44:619–634

    PubMed  CAS  Google Scholar 

  • Burch-Smith TM, Anderson JC, Martin GB, Dinesh-Kumar SP (2004) Applications and advantages of virus-induced gene silencing for gene function studies in plants. Plant J 39:734–746

    PubMed  CAS  Google Scholar 

  • Burgess DG, Ralston EJ, Hanson WG, Heckert M, Ho M, Jenq T, Palys JM, Tang K, Gutterson N (2002) A novel, two-component system for cell lethality and its use in engineering nuclear male-sterility in plants. Plant J 31:113–125

    PubMed  CAS  Google Scholar 

  • Busov V, Meilan R, Pearce DW, Rood SB, Ma C, Tschaplinski TJ, Strauss SH (2006) Transgenic modification of gai or rgl1 causes dwarfing and alters gibberellins, root growth, and metabolite profiles in Populus. Planta 24:288–299

    Google Scholar 

  • Carlsbecker A, Sundstrom J, Tandre K, Englund M, Kvarnheden A, Johanson U, Engstrom P (2003) The DAL10 gene from Norway spruce (Picea abies) belongs to a potentially gymnosperm-specific subclass of MADS-box genes and is specifically active in seed cones and pollen cones. Evol Dev 5:551–561

    PubMed  CAS  Google Scholar 

  • Carlsbecker A, Tandre K, Johanson U, Englund M, Engstrom P (2004) The MADS-box gene DAL1 is a potential mediator of the juvenile-to-adult transition in Norway spruce (Picea abies). Plant J 40:546–557

    PubMed  CAS  Google Scholar 

  • Cashore B, Auld G, Newsom D (2003) Forest certification (eco-labeling) programs and their policymaking authority: explaining divergence among North American and European case studies. FPE 5:225–247

    Google Scholar 

  • Cervera M, Pina JA, Juárez J, Navarro L, Peña L (2000) A broad exploration of a transgenic population of citrus: stability of gene expression and phenotype. Theor Appl Genet 100:670–677

    CAS  Google Scholar 

  • Chen Y, Schneeberger RG, Cullis CA (2005) A site-specific insertion sequence in flax genotrophs induced by environment. New Phytol 167:171–180

    PubMed  CAS  Google Scholar 

  • Cho H, Kim S, Kim M, Kim B (2001) Production of transgenic male sterile tobacco plants with the cDNA encoding a ribosome inactivating protein in Dianthus sinensis. Mol Cells 11:326–333

    PubMed  CAS  Google Scholar 

  • Chrimes D, Rogers HJ, Francis D, Jones HD, Ainsworth C (2005) Expression of fission yeast cdc25 driven by the wheat ADP-glucose pyrophosphorylase large subunit promoter reduces pollen viability and prevents transmission of the transgene in wheat. New Phytol 166:185–192

    PubMed  CAS  Google Scholar 

  • Chuang CF, Meyerowitz EM (2000) Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc Natl Acad Sci USA 97:4985–4990

    PubMed  CAS  Google Scholar 

  • Cigan A, Albertsen M (2002) Reversible nuclear genetic system for male sterility in transgenic plants. United States Patent and Trademark Office 6,399,856, 8 patents

  • Cigan AM, Unger-Wallace E, Haug-Collet K (2005) Transcriptional gene silencing as a tool for uncovering gene function in maize. Plant J 43:929–940

    PubMed  CAS  Google Scholar 

  • Clark JS, Lewis M, McLachlan JS, HilleRisLambers J (2003) Estimating population spread: what can we forecast and how well? Ecology 84:1979–1988

    Google Scholar 

  • Comai L, Cartwright RA (2005) A toxic mutator and selection alternative to the non-Mendelian RNA cache hypothesis for hothead reversion. Plant Cell 17:2856–2858

    PubMed  CAS  Google Scholar 

  • Conner AJ, Mlynrov L, Stiekema WJ, Nap J (1998) Meiotic stability of transgene expression is unaffected by flanking matrix-associated regions. Mol Breed 4:47–58

    CAS  Google Scholar 

  • Crawley MJ, Brown SL (1995) Seed limitation and the dynamics of feral oilseed rape on the M25 motorway. Proc R Soc Lond B Biol Sci 259:49–54

    Google Scholar 

  • Cseke LJ, Zheng J, Podila GK (2003) Characterization of PTM5 in aspen trees: a MADS-box gene expressed during woody vascular development. Gene 318:55–67

    PubMed  CAS  Google Scholar 

  • Cummins J, Ho MW (2005) Terminator Trees ISIS http://www.i-sis.org.uk/full/TerminatorTreesFull.php (accessed March 10, 2006)

  • Daniel TW, Helms JA, Baker FS (1979) Principles of silviculture. McGraw-Hill, NY

    Google Scholar 

  • Davis W (2000) Mutant male sterile gene of soybean. United States Patent and Trademark Office 6,046,385

  • de Folter S, Immink RG, Kieffer M, Parenicova L, Henz SR, Weigel D, Busscher M, Kooiker M, Colombo L, Kater MM, Davies B, Angenent GC (2005) Comprehensive interaction map of the Arabidopsis MADS Box transcription factors. Plant Cell 17:1424–1433

    PubMed  Google Scholar 

  • Dellaporta S, Moreno M (2004) Methods and compositions to reduce or eliminate transmission of a transgene. United States Patent and Trademark Office 20040154054

  • Dievart A, Dalal M, Tax FE, Lacey AD, Huttly A, Li J, Clark SE (2003) CLAVATA1 dominant-negative alleles reveal functional overlap between multiple receptor kinases that regulate meristem and organ development. Plant Cell 15:1198–1211

    PubMed  CAS  Google Scholar 

  • DiFazio SP (2002) Measuring and Modeling Gene Flow from Hybrid Poplar Plantations: Implications for Transgenic Risk Assessment. Ph.D. Thesis, Oregon State University, Corvallis, OR. http://www.fsl.orst.edu/tgerc/dif_thesis/difaz_thesis.pdf

  • Dirks R, Trinks K, Uijtewaal B, Bartsch K, Peeters R, Hofgen R, Pohlenz H-D (2001) Process for generating male sterile plants. United States Patent and Trademark Office 6,262,339

  • Doering DS (2004) Designing genes: aiming for safety and sustainability in U.S. agriculture and biotechnology. World Resources Institute, Washington, DC, p 43

  • Dunning JB, Stewart DJ, Danielson BJ, Noon BR, Root TL, Lamberson RH, Stevens EE (1995) Spatially explicit population models: current forms and future uses. Ecol Appl 5:3–11

    Google Scholar 

  • Ellstrand NC (2003) Dangerous liaisons? when cultivated plants mate with their wild relatives. The Johns Hopkins University Press, Baltimore p 244

    Google Scholar 

  • Elo A, Lemmetyinen J, Turunen ML, Tikka L, Sopanen T (2001) Three MADS-box genes similar to APETALA1 and FRUITFUL from silver birch (Betula pendula). Physiol Plant 112:95–103

    PubMed  CAS  Google Scholar 

  • Endo T, Shimada T, Fujii H, Kobayashi Y, Araki T, Omura M (2005) Ectopic expression of an FT homolog from citrus confers an early flowering phenotype on trifoliate orange (Poncirus trifoliata L. Raf.). Transgenic Res 14:703–712

    PubMed  CAS  Google Scholar 

  • ETC (2006) Terminator threat looms. ETC Group http://www.etcgroup.org/ (accessed March 10, 2006)

  • Ferrario S, Busscher J, Franken J, Gerats T, Vandenbussche M, Angenent GC, Immink RG (2004) Ectopic expression of the petunia MADS box gene UNSHAVEN accelerates flowering and confers leaf-like characteristics to floral organs in a dominant-negative manner. Plant Cell 16:1490–1505

    PubMed  CAS  Google Scholar 

  • Fisher RA (1937) The wave of advance of advantageous genes. Ann Eugen 7:355–369

    Google Scholar 

  • Fladung M (1999) Gene stability in transgenic aspen (Populus). I. Flanking DNA sequences and T-DNA structure. Mol Gen Genet 260:574–581

    PubMed  CAS  Google Scholar 

  • Gallo-Meagher M, Irvine JE (1996) Herbicide resistant transgenic sugarcane plants containing the bar gene. Crop Sci 36:1367–1374

    Article  CAS  Google Scholar 

  • Gilbertson L (2003) Cre-lox recombination: cre-ative tools for plant biotechnology. Trends Biotechnol 21:550–555

    PubMed  CAS  Google Scholar 

  • Goetz M, Godt DE, Giuvarch A, Kahmann U, Chriqui D, Roitsch T (2001) Induction of male sterility in plants by metabolic engineering of the carbohydrate supply. Proc Natl Acad Sci USA 98:6522–6527

    PubMed  CAS  Google Scholar 

  • Gressel J (1999) Tandem constructs: preventing the rise of superweeds. Trends Biotechnol 17:361–366

    PubMed  CAS  Google Scholar 

  • Groover AT (2005) What genes make a tree a tree? Trends Plant Sci 10:210–214

    PubMed  CAS  Google Scholar 

  • Guan X, Stege J, Kim M, Dahmani Z, Fan N, Heifetz P, Barbas CF 3rd, Briggs SP (2002) Heritable endogenous gene regulation in plants with designed polydactyl zinc finger transcription factors. Proc Natl Acad Sci USA 99:13296–13301

    PubMed  CAS  Google Scholar 

  • Guerineau F, Sorensen A, Fenby N, Scott RJ (2003) Temperature sensitive diphtheria toxin confers conditional male-sterility in Arabidopsis thaliana. Plant Biotechnol J 1:33–42

    PubMed  CAS  Google Scholar 

  • Hails RS, Morley K (2005) Genes invading new populations: a risk assessment perspective. Trends Ecol Evol 20:245–252

    PubMed  Google Scholar 

  • Han Y, Griffiths A, Li H, Grierson D (2004) The effect of endogenous mRNA levels on co-suppression in tomato. FEBS Lett 563:123–128

    PubMed  CAS  Google Scholar 

  • Harberd N, Peng J, Carol P, Richards D (2004a) Nucleic acid encoding GAI gene of Arabidopsis thaliana. United States Patent and Trademark Office 6,830,930

  • Harberd N, Richards DE, Peng J (2004b) Genetic control of plant growth and development. United States Patent and Trademark Office 6,762,348

  • Hawkins S, Leplé J, Cornu D, Jouanin L, Pilate G (2003) Stability of transgene expression in poplar: a model forest tree species. Ann For Sci 60:427–438

    Google Scholar 

  • Haygood R, Ives AR, Andow DA (2003) Consequences of recurrent gene flow from crops to wild relatives. Proc Biol Sci 270:1879–1886

    PubMed  Google Scholar 

  • Higgins SI, Cain ML (2002) Spatially realistic plant metapopulation models and the colonization-competition trade-off. J Ecol 90:616–626

    Google Scholar 

  • Higgins SI, Richardson DM (1999) Predicting plant migration rates in a changing world: the role of long-distance dispersal. Am Nat 153:464–475

    Google Scholar 

  • Higgins SI, Richardson DM, Cowling RM (1996) Modeling invasive plant spread: the role of plant–environment interactions and model structure. Ecology 77:2043–2054

    Google Scholar 

  • Hill RA (2005) Conceptualizing risk assessment methodology for genetically modified organisms. Environ Biosafety Res 4:67–70

    PubMed  Google Scholar 

  • Hiratsu K, Matsui K, Koyama T, Ohme-Takagi M (2003) Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis. Plant J 34:733–739

    PubMed  CAS  Google Scholar 

  • Hird DL, Paul W, Hollyoak JS, Scott RJ (2000) The restoration of fertility in male sterile tobacco demonstrates that transgene silencing can be mediated by T-DNA that has no DNA homology to the silenced transgene. Transgenic Res 9:91–102

    PubMed  CAS  Google Scholar 

  • Hoenicka H, Fladung M (2006a) Biosafety in Populus spp. and other forest trees: from non-native species to taxa derived from traditional breeding and genetic engineering. Trees 20:131–144

    Google Scholar 

  • Hoenicka H, Fladung M (2006b) Genome instability in woody plants derived from genetic engineering. In: Fladung M, Ewald D (eds) Tree transgenesis-recent developments. Springer, Berlin Heidelberg New York, pp 301–321

    Google Scholar 

  • Höfig KP, Möller R, Donaldson L, Putterill J, Walter C (2006) Towards male-sterility in Pinus radiata—a stilbene synthase approach to genetically engineer nuclear male sterility. Plant Biotechnol J 4:333–343

    PubMed  Google Scholar 

  • Howard RD, DeWoody JA, Muir WM (2004) Transgenic male mating advantage provides opportunity for Trojan gene effect in a fish. Proc Natl Acad Sci USA 101:2934–2938

    PubMed  CAS  Google Scholar 

  • Hsu CY, Liu Y, Luthe DS, Yuceer C (2006) Poplar FT2 shortens the juvenile phase and promotes seasonal flowering. Plant Cell 18(8):1846–1861

    PubMed  CAS  Google Scholar 

  • Iglesias VA, Moscone EA, Papp I, Neuhuber F, Michalowshi S, Phelan T, Spiker S, Matzke M, Matzke AJM (1997) Molecular and cytogenetic analyses of stably and unstably expressed transgene loci in tobacco. Plant Cell 9:1251–1264

    PubMed  CAS  Google Scholar 

  • Irish VF, Litt A (2005) Flower development and evolution: gene duplication, diversification and redeployment. Curr Opin Genet Dev 15:454–460

    PubMed  CAS  Google Scholar 

  • ISAAA (2006) Brazil: curtailing research and technological innovation. CropBiotech Update, International Service for the Acquisition of Agri-biotech Applications, SEAsia Center, 14 July 2006. http://www.cedab.it/newsletter_ISAAA.asp?IDnews=127#ancora2, accessed July 29, 2006

  • Jackson AL, Linsley PS (2004) Noise amidst the silence: off-target effects of siRNAs? Trends Genet 20:521–524

    PubMed  CAS  Google Scholar 

  • Jager M, Hassanin A, Manuel M, Le Guyader H, Deutsch J (2003) MADS-box genes in Ginkgo biloba and the evolution of the AGAMOUS family. Mol Biol Evol 20:842–854

    PubMed  CAS  Google Scholar 

  • James RR, DiFazio SP, Brunner AM, Strauss SH (1998) Environmental effects of genetic engineering of woody biomass crops. Biomass Bioenergy 14:403–414

    CAS  Google Scholar 

  • James V, Worland B, Snape JW, Vain P (2004) Strategies for precise quantification of transgene expression levels over several generations in rice. J Exp Bot 55:1307–1313

    PubMed  CAS  Google Scholar 

  • Jeon JS, Jang S, Lee S, Nam J, Kim C, Lee SH, Chung YY, Kim SR, Lee YH, Cho YG, An G (2000) Leafy hull sterile1 is a homeotic mutation in a rice MADS box gene affecting rice flower development. Plant Cell 12:871–884

    PubMed  CAS  Google Scholar 

  • Johnson B, Kirby K (2004) Potential impacts of genetically modified trees on biodiversity of forestry plantations: a global perspective. In: Strauss SH, Bradshaw HD (eds) The bio engineered forest: challenges to science and society. Resources for the future. Washington DC, pp 190–207

  • Katul GG, Porporato A, Nathan R, Siqueira M, Soons MB, Poggi D, Horn HS, Levin SA (2005) Mechanistic analytical models for long-distance seed dispersal by wind. Am Nat 166:368–381

    PubMed  CAS  Google Scholar 

  • Kelly CK, Bowler MG, Breden F, Fenner M, Poppy GM (2005) An analytical model assessing the potential threat to natural habitats from insect resistance transgenes. Proc Biol Sci 272:1759–1767

    PubMed  Google Scholar 

  • Kerschen A, Napoli CA, Jorgensen RA, Muller AE (2004) Effectiveness of RNA interference in transgenic plants. FEBS Lett 566:223–228

    PubMed  CAS  Google Scholar 

  • Kilby NJ, Leyser HMO, Furner IJ (1992) Promoter methylation and progressive transgene inactivation in Arabidopsis. Plant Mol Biol 20:103–112

    PubMed  CAS  Google Scholar 

  • Knox R, Singh M, Xu H (2004) Developmental regulation in anther tissue of plants. United States Patent and Trademark Office 6,740,748

  • Kohli A, Gahakwa D, Vain P, Laurie DA, Christou P (1999) Transgene expression in rice engineered through particle bombardment: molecular factors controlling stable expression and transgene silencing. Planta 208:88–97

    CAS  Google Scholar 

  • Kreiman G (2004) Identification of sparsely distributed clusters of cis-regulatory elements in sets of co-expressed genes. Nucleic Acids Res 32:2889–2900

    PubMed  CAS  Google Scholar 

  • Kumar S, Fladung M (2001) Gene stability in transgenic aspen (populus). II. Molecular characterization of variable expression of transgene in wild and hybrid aspen. Planta 213:731–740

    PubMed  CAS  Google Scholar 

  • Kuvshinov VV, Koivu K, Kanerva A, Pehu E (2001) Molecular control of transgene escape from genetically modified plants. Plant Sci 160:517–522

    PubMed  CAS  Google Scholar 

  • Kyozuka J, Harcourt R, Peacock WJ, Dennis ES (1997) Eucalyptus has functional equivalents of the Arabidopsis AP1 gene. Plant Mol Biol 35:573–584

    PubMed  CAS  Google Scholar 

  • Lännenpää M, Hassinen M, Ranki A, Hölttä-Vuora M, Lemmetyinen J, Keinonnen K, Sopanen T (2005) Prevention of flower development in birch and other plants using a BPFULL1::BARNASE construct. Plant Cell Rep 24:69–78

    PubMed  Google Scholar 

  • Lavorel S, Smith MS, Reid N (1999) Spread of mistletoes (Amyema preissii) in fragmented Australian woodlands: a simulation study. Landsc Ecol 14:147–160

    Google Scholar 

  • Lee YH, Chung KH, Kim HU, Jin YM, Kim HI, Park BS (2003) Introduction of male sterile cabbage using a tapetum-specific promoter from Brassica campestris L. ssp. pekinensis. Plant Cell Rep 22:268–273

    PubMed  CAS  Google Scholar 

  • Leibbrandt NB, Snyman SJ (2003) Stability of gene expression and agronomic performance of a transgenic herbicide-resistant sugarcane line in South Africa. Crop Sci 43:671–677

    Article  CAS  Google Scholar 

  • Lemmetyinen J, Keinonen K, Sopanen T (2004a) Prevention of flowering of a tree, silver birch. Mol Breed 13:243–249

    CAS  Google Scholar 

  • Lemmetyinen J, Hassinen M, Elo A, Porali I, Keinonen K, Makela H, Sopanen T (2004b) Functional characterization of SEPALLATA3 and AGAMOUS orthologues in silver birch. Physiol Plant 121:149–162

    PubMed  CAS  Google Scholar 

  • Li X, Zhong S, Wong WH (2005) Reliable prediction of transcription factor binding sites by phylogenetic verification. Proc Natl Acad Sci USA 102:16945–16950

    PubMed  CAS  Google Scholar 

  • Liebhard R, Kellerhals M, Pfammatter W, Jertmini M, Gessler C (2003) Mapping quantitative physiological traits in apple (Malus x domestica Borkh.). Plant Mol Biol 52:511–526

    PubMed  CAS  Google Scholar 

  • Lloyd A, Plaisier CL, Carroll D, Drews GN (2005) Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proc Natl Acad Sci USA 102:2232–2237

    PubMed  CAS  Google Scholar 

  • Lolle SJ, Victor JL, Young JM, Pruitt RE (2005) Genome-wide non-Mendelian inheritance of extra-genomic information in Arabidopsis. Nature 434:505–509

    PubMed  CAS  Google Scholar 

  • Luo H, Kausch AP, Hu Q, Nelson K, Wipff JK, Fricker CC, Owen T, Moreno MA, Lee J, Hodges TK (2005) Controlling transgene escape in GM creeping bentgrass. Mol Breed 16:185–188

    Google Scholar 

  • Mariani C, Beuckeleer M.D, Truettner J, Leemans J, Goldberg RB (1990) Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature 347:737–741

    CAS  Google Scholar 

  • Mariani C, Gossele V, Beuckeleer MD, Block MD, Goldberg RB, Greef WD, Leemans J (1992) A chimaeric ribonuclease-inhibitor gene restores fertility to male sterile plants. Nature 357:384–387

    CAS  Google Scholar 

  • Matzke MA, Birchler JA (2005) RNAi-mediated pathways in the nucleus. Nat Rev Genet 6:24–35

    PubMed  CAS  Google Scholar 

  • Matzke M, Aufsatz W, Kanno T, Daxinger L, Papp I, Mette MF, Matzke AJ (2004) Genetic analysis of RNA-mediated transcriptional gene silencing. Biochim Biophys Acta 1677:129–141

    PubMed  CAS  Google Scholar 

  • Meilan R, Auerbach DJ, Ma C, DiFazio SP, Strauss SH (2002) Stability of herbicide resistance and GUS expression in transgenic hybrid poplars (Populus sp.) during four years of field trials and vegetative propagation. HortScience 37:277–280

    CAS  Google Scholar 

  • Mellerowicz EJ, Horgan K, Walden A, Coker A, Walter C (1998) PRFLL-a Pinus radiata homologue of FLORICAULA and LEAFY is expressed in buds containing vegetative shoot and undifferentiated male cone primordia. Planta 206:619–629

    PubMed  CAS  Google Scholar 

  • Meyer P, Linn F, Heidmann I, Meyer H, Niedenhof I, Saedler H (1992) Endogenous and environmental factors influence 35S promoter methylation of a maize A1 gene construct in transgenic petunia and its colour phenotype. Mol Gen Genet 231:345–352

    PubMed  CAS  Google Scholar 

  • Meza TJ, Kamfjord D, Hakelien A, Evans I, Godager LH, Mandal A, Jakobsen KS, Aalen RB (2001) The frequency of silencing in Arabidopsis thaliana varies highly between progeny of siblings and can be influenced by environmental factors. Transgenic Res 10:53–67

    PubMed  CAS  Google Scholar 

  • Michiels F, Botterman J, Cornelissen M (2000) Method to obtain male sterile plants. United States Patent and Trademark Office 6,025,546

  • Miki D, Itoh R, Shimamoto K (2005) RNA silencing of single and multiple members in a gene family of rice. Plant Physiol 138:1903–1913

    PubMed  CAS  Google Scholar 

  • Missiaggia AA, Piacezzi AL, Grattapaglia D (2005) Genetic mapping of Eef1, a major effect QTL for early flowering in Eucalyptus grandis. Tree Genet Genomes 1:79–84

    Google Scholar 

  • Mitsuda N, Hiratsu K, Todaka D, Nakashima K, Yamaguchi-Shinozaki K, Ohme-Takagi M (2006) Efficient production of male and female sterile plants by expression of a chimeric repressor in Arabidopsis and rice. Plant Biotechnol J 4:325–332

    PubMed  CAS  Google Scholar 

  • Mohamed R (2006) Expression and function of Populus homologs to TERMINAL FLOWER 1 genes: roles in onset of flowering and shoot phenology. Ph.D. Thesis, Oregon State University, Corvallis, Oregon USA. 136 pp. http://www.fsl.orst.edu/tgerc/strauss/Rozi_Mohamed_PhD Thesis_January 2006.pdf (accessed March 16, 2006)

  • Morina K, Olsen O, Shimamoto K (1999) Silencing of an aleurone-specific gene in transgenic rice is caused by a rearranged trangsgene. Plant J 17:275–285

    Google Scholar 

  • Mou Z, Wang X, Fu Z, Dai Y, Han C, Ouyang J, Bao F, Hu Y, Li J (2002) Silencing of phosphoethanolamine N-methyltransferase results in temperature-sensitive male sterility and salt hypersensitivity in Arabidopsis. Plant Cell 14:2031–2043

    PubMed  CAS  Google Scholar 

  • Mouradov A, Glassick T, Hamdorf B, Murphy L, Fowler B, Marla S, Teasdale RD (1998) NEEDLY, a Pinus radiata ortholog of FLORICAULA/LEAFY genes, expressed in both reproductive and vegetative meristems. Proc Natl Acad Sci USA 95:6537–6542

    PubMed  CAS  Google Scholar 

  • Müller AJ, Mendel RR, Schiemann J, Simoens C, Inzé D (1987) High meiotic stability of a foreign gene introduced into tobacco by Agrobacterium-mediated transformation. Mol Gen Genet 207:171–175

    PubMed  Google Scholar 

  • Mlynárová L, Conner AJ, Nap J-P (2006) Directed microspore-specific recombination of transgenic alleles to prevent pollen-mediated transmission of transgenes. Plant Biotechnol J 4:445–452

    PubMed  Google Scholar 

  • Nathan R, Katul GG, Horn HS, Thomas SM, Oren R, Avissar R, Pacala SW, Levin SA (2002) Mechanisms of long-distance dispersal of seeds by wind. Nature 418:409–413

    PubMed  CAS  Google Scholar 

  • Nathan R, Perry G, Cronin JT, Strand AE, Cain ML (2003) Methods for estimating long-distance dispersal. Oikos 103:261–273

    Google Scholar 

  • Naylor M, Reeves J, Cooper JI, Edwards ML, Wang H (2005) Construction and properties of a gene-silencing vector based on Poplar mosaic virus (genus Carlavirus). J Virol Methods 124:27–36

    PubMed  CAS  Google Scholar 

  • NRC (2004) Biological confinement of genetically engineered organisms. The National Academies, Washington, DC p 256

    Google Scholar 

  • Ottaviani MP, Hanisch ten Cate CH, Doting LV (1992) Expression of introduced genes after tuber propagation of transgenic potato plants. Plant Breed 109:89–96

    CAS  Google Scholar 

  • Ouellet T, Singh J, Tao T, Simmonds J (2003) Corn silk gene and regulatory region. United States Patent and Trademark Office 6,515,204

  • Parker IM, Kareiva P (1996) Assessing the risks of invasion for genetically engineered plants: acceptable evidence and reasonable doubt. Biol Conserv 78:193–203

    Google Scholar 

  • Patell V, Rayapuram N, Venkataramiah M, Joma J, Goswami S (2003) Process for generating cytoplasmic male sterile line in rice and other crops by RNA editing. United States Patent and Trademark Office 20030163856

  • Pavingerová D, Dostál J, Bísková R, Benetka V (1994) Somatic embryogenesis and Agrobacterium-mediated transformation of chrysanthemum. Plant Sci 97:95–101

    Google Scholar 

  • Pena L, Martin-Trillo M, Juarez J, Pina JA, Navarro L, Martinez-Zapater JM (2001) Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time. Nat Biotechnol 19:263–267

    PubMed  CAS  Google Scholar 

  • Petersen BO, Albrechtsen M (2005) Evidence implying only unprimed RdRP activity during transitive gene silencing in plants. Plant Mol Biol 58(4):575–583

    PubMed  CAS  Google Scholar 

  • Pilate G, Guiney E, Holt K, Petit-Conil M, Lapierre C, Lepl’e J, Pollet B, Mila I, Webster EA, Marstorp HG, Hopkins DW, Jouanin L, Boerjan W, Schuch W, Cornu D, and Halpin C (2002) Field and pulping performances of transgenic trees with altered lignification. Nat Biotechnol 20:607–612

    PubMed  CAS  Google Scholar 

  • Pilson D, Prendeville HR (2004) Ecological effects of transgenic crops and the escape of transgenes into wild populations. Annu Rev Ecol Evol Syst 35:149–174

    Google Scholar 

  • Poovaiah B, Patil S, Takezawa D (2002) Compositions and methods for production of male-sterile plants. United States Patent and Trademark Office 6,403,352

  • Preston J, Wheeler J, Heazlewood J, Li SF, Parish RW (2004) AtMYB32 is required for normal pollen development in Arabidopsis thaliana. Plant J 40:979–995

    PubMed  CAS  Google Scholar 

  • Quandt J, Bartsch K, Knittel N (2002) Conditional sterility in wheat. United States Patent and Trademark Office 6,384,304

  • Raser JM, O’Shea EK (2004) Control of stochasticity in eukaryotic gene expression. Science 304:1811–1814

    PubMed  CAS  Google Scholar 

  • Ray A, Golden T (2004) Gene encoding short integuments and uses thereof. United States Patent and Trademark Office 6,737,561

  • Rees M, Paynter Q (1997) Biological control of Scotch broom: modeling the determinants of abundance and the potential impact of introduced insect herbivores. J Appl Ecol 34:1203–1221

    Google Scholar 

  • Rombauts S, Florquin K, Lescot M, Marchal K, Rouze P, van de Peer Y (2003) Computational approaches to identify promoters and cis-regulatory elements in plant genomes. Plant Physiol 132:1162–1176

    PubMed  CAS  Google Scholar 

  • Rood SB, Kalischuk AR, Polzin ML, Braatne JH (2003) Branch propagation, not cladoptosis, permits dispersive, clonal reproduction of riparian cottonwoods. For Ecol Manag 186:227–242

    Google Scholar 

  • Rottmann WH, Meilan R, Sheppard LA, Brunner AM, Skinner JS, Ma C, Cheng S, Jouanin L, Pilate G, Strauss SH (2000) Diverse effects of over expression of LEAFY and PTLF, a poplar (Populus) homolog of LEAFY/FLOICAULA, in transgenic poplar and Arabidopsis. Plant J 22:235–245

    PubMed  CAS  Google Scholar 

  • Rutledge R, Regan S, Nicolas O, Fobert P, Cote C, Bosnich W, Kauffeldt C, Sunohara G, Seguin A, Stewart D (1998) Characterization of an AGAMOUS homologue from the conifer black spruce (Picea mariana) that produces floral homeotic conversions when expressed in Arabidopsis. Plant J 15:625–634

    PubMed  CAS  Google Scholar 

  • Scheid OM, Paszkowski J, Potrykus I (1991) Reversible inactivation of a transgene in Arabidopsis thaliana. Mol Gen Genet 228:104–112

    CAS  Google Scholar 

  • Schmid M, Uhlenhaut NH, Godard F, Demar M, Bressan R, Weigel D, Lohmann JU (2003) Dissection of floral induction pathways using global expression analysis. Development 130:6001–6012

    PubMed  CAS  Google Scholar 

  • Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Scholkopf B, Weigel D, Lohmann JU (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37:501–506

    PubMed  CAS  Google Scholar 

  • Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D (2005) Specific effects of microRNAs on the plant transcriptome. Dev Cell 8:517–527

    PubMed  CAS  Google Scholar 

  • Scortecci KC, Michaels SD, Amasino RM (2001) Identification of a MADS-box gene, FLOWERING LOCUS M, that repress flowering. Plant J 26:229–236

    PubMed  CAS  Google Scholar 

  • Segal DJ, Stege JT, Barbas CF 3rd (2003) Zinc fingers and a green thumb: manipulating gene expression in plants. Curr Opin Plant Biol 6:163–168

    PubMed  CAS  Google Scholar 

  • Shaked H, Melamed-Bessudo C, Levy AA (2005) High-frequency gene targeting in Arabidopsis plants expressing the yeast RAD54 gene. Proc Natl Acad Sci USA 102:12265–12269

    PubMed  CAS  Google Scholar 

  • Sheppard LA, Brunner AM, Krutovskii KV, Rottmann WH, Skinner JS, Vollmer SS, Strauss SH (2000) A DEFICIENS homolog from the dioecious tree Populus trichocarpa is expressed in both female and male floral meristems of its two-whorled, unisexual flowers. Plant Physiol 124:627–640

    PubMed  CAS  Google Scholar 

  • Shigesada N, Kawasaki K (1997) Biological invasions: theory and practice. Oxford University Press, New York, p 205

    Google Scholar 

  • Shindo S, Ito M, Ueda K, Kato M, Hasebe M (1999) Characterization of MADS genes in the gymnosperm Gnetum parvifolium and its implication on the evolution of reproductive organs in seed plants. Evol Dev 1:180–190

    PubMed  CAS  Google Scholar 

  • Skinner JS, Meilan R, Brunner AM, Strauss SH (2000) Options for genetic engineering of floral sterility in forest trees. In: Jain SM, Minocha SC (eds) Molecular biology of woody plants. Kluwer, Dordrecht, The Netherlands, pp 135–153

    Google Scholar 

  • Skinner JS, Meilan R, Ma C, Strauss SH (2003) The Populus PTD promoter imparts floral-predominant expression and enables high levels of floral-organ ablation in Populus, Nicotiana and Arabidopsis. Mol Breed 12:119–132

    CAS  Google Scholar 

  • Slavov, GT, DiFazio SP, Strauss SH (2004) Gene flow in forest trees: gene migration patterns and landscape modeling of transgene dispersal in hybrid poplar. In: den Nijs HCM, Bartsch D, Sweet J (eds) Introgression from genetically modified plants into wild relatives. CAB International, UK, pp 89–106

    Google Scholar 

  • Smeekens S, Weisbeek P, Proveniers M (2005) Plant gene constructs and their use. United States Patent and Trademark Office 6,864,051

  • Smouse PE, Sork VL (2004) Measuring pollen flow in forest trees: an exposition of alternative approaches. For Ecol Manage 197:21–38

    Google Scholar 

  • Snow AA, Andow DA, Gepts P, Hallerman EM, Power A, Tiedje JM, Wolfenbarger LL (2005) Genetically engineered organisms and the environment: current status and recommendations. Ecol Appl 15:377–404

    Google Scholar 

  • Southerton SG, Marshall H, Mouradov A, Teasdale RD (1998) Eucalypt MADS-box genes expressed in developing flowers. Plant Physiol 118:365–372

    PubMed  CAS  Google Scholar 

  • Spena A, Saedler H, Sommer H, Rotino G (2002) Methods for producing parthenocarpic or female sterile transgenic plants and methods for enhancing fruit setting and development. United States Patent and Trademark Office 6,483,012

  • Stewart CN, Halfhill MD, Warwick SI (2003) Transgene introgression from genetically modified crops to their wild relatives. Nat Rev Genet 4:806–817

    PubMed  CAS  Google Scholar 

  • Stoutjesdijk PA, Singh SP, Liu Q, Hurlstone CJ, Waterhouse PA, Green AG (2002) hpRNA-mediated targeting of the Arabidopsis FAD2 gene gives highly efficient and stable silencing. Plant Physiol 129:1723–1731

    PubMed  CAS  Google Scholar 

  • Strauss SH (2003) Genomics, genetic engineering, and domestication of crops. Science 300:61–62

    PubMed  CAS  Google Scholar 

  • Strauss SH, Bradshaw HD (eds) (2004) The bioengineered forest: challenges to science and society. Resources for the Future, Washington, DC, p 245

  • Strauss SH, Brunner AM (2004) Tree biotechnology in the 21st century: Transforming trees in the light of comparative genomics. In: Strauss SH, Bradshaw HD (eds) The bioEngineered forest: challenges to science and society. Resources for the Future, Washington, DC, pp 76–97

  • Strauss SH, Rottmann WH, Brunner AW, Sheppard LA (1995) Genetic engineering of reproductive sterility in forest trees. Mol Breed 1:5–26

    CAS  Google Scholar 

  • Strauss SH, Coventry P, Campbell MM, Pryor SM, Burley J (2001a) Certification of genetically modified forest plantations. Int For Rev 3:87–104

    Google Scholar 

  • Strauss SH, Campbell MM, Pryor SN, Coventry P, Burley J (2001b) Plantation certification and genetic engineering: banning research is counterproductive. J For 99:4–7

    Google Scholar 

  • Strauss S, Rottmann W, Brunner A, Sheppard L (2002) Floral homeotic genes for manipulation of flowering in poplar and other plant species. United States Patent and Trademark Office 6,395,892

  • Strauss SH, Brunner AM, Busov VB, Ma C, Meilan R (2004) Ten lessons from 15 years of transgenic Populus research. Forestry 77:455–465

    Google Scholar 

  • Sundstrom J, Carlsbecker A, Svensson ME, Svenson M, Johanson U, Theissen G, Engstrom P (1999) MADS-box genes active in developing pollen cones of Norway spruce (Picea abies) are homologous to the B-class floral homeotic genes in angiosperms. Dev Genet 25:253–266

    PubMed  CAS  Google Scholar 

  • Tandre K, Albert VA, Sundas A, Engstrom P (1995) Conifer homologues to genes that control floral development in angiosperms. Plant Mol Biol 27:69–78

    PubMed  CAS  Google Scholar 

  • Vaistij FE, Jones L, Baulcombe DC (2002) Spreading of RNA targeting and DNA methylation in RNA silencing requires transcription of the target gene and a putative RNA-dependent RNA polymerase. Plant Cell 14:857–867

    PubMed  CAS  Google Scholar 

  • Valenzuela S, Strauss SH (2005) Lost in the woods. Nat Biotechnol 23:532–533

    PubMed  CAS  Google Scholar 

  • Wagner A, Phillips L, Narayan RD, Moody JM, Geddes B (2005) Gene silencing studies in the gymnosperm Pinus radiata. Plant Cell Rep 24:95–102

    PubMed  CAS  Google Scholar 

  • Waterhouse P, Wang M-B (2002) Methods for obtaining modified phenotypes in plant cells. United States Patent and Trademark Office 6,423,885

  • Watson JM, Fusaro AF, Wang M, Waterhouse PM (2005) RNA silencing platforms in plants. FEBS Lett 579:5982–5987

    PubMed  CAS  Google Scholar 

  • Wei H, Meilan R, Brunner AM, Skinner JS, Ma C, Gandhi HT, Strauss SH (2006) Field trial detects incomplete barstar attenuation of vegetative cytotoxicity in Populus trees containing a poplar LEAFY promoter::barnase sterility transgene. Molec Breed DOI 10.1007/s11032-006-9045-y

  • Weigel D, Nilsson O (1995) A developmental switch sufficient for flower initiation in diverse plants. Nature 377:495–500

    PubMed  CAS  Google Scholar 

  • Weisker A (1995) Hybrid safflower production utilizing genetic dwarf male sterility. United States Patent and Trademark Office 5,436,386

  • Wellmer F, Riechmann JL, Alves-Ferreira M, Meyerowitz EM (2004) Genome-wide analysis of spatial gene expression in Arabidopsis flowers. Plant Cell 16:1314–1326

    PubMed  CAS  Google Scholar 

  • Wesley SV, Helliwell CA, Smith NA, Wang MB, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA, Robinson SP, Gleave AP, Green AG,Waterhouse PM (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27:581–590

    PubMed  CAS  Google Scholar 

  • Whitham TG, Bailey JK, Schweitzer JA, Shuster SM, Bangert RK, LeRoy CJ, Lonsdorf EV, Allan GJ, DiFazio SP, Potts BM, Fischer DG, Gehring CA, Lindroth RL, Marks JC, Hart SC, Wimp GM, Wooley SC (2006) A framework for community and ecosystem genetics: from genes to ecosystems. Nat Rev Genet 7:510–523

    PubMed  CAS  Google Scholar 

  • Williams CG (2005) Framing the issues on transgenic forests. Nat Biotechnol 23:530–532

    PubMed  CAS  Google Scholar 

  • Wright DA, Townsend JA, Winfrey Jr RJ, Irwin PA, Rajagopal J, Lonosky PM, Hall BD, Jondle MD, Voytas DF (2005) High-frequency homologous recombination in plants mediated by zinc-finger nucleases. Plant J 44:693–705

    PubMed  CAS  Google Scholar 

  • Yanofsky M (2000) Seed plants exhibiting early reproductive development and methods of making same. United States Patent and Trademark Office 6,025,543

  • Li Y, Pei Y (2006) Biotech approaches to improve biomass production of poplar and to produce GM gene free pollen and seed from GM plants. P. 13 (abstracts), Int Poplar Symp IV, June 5-9, Nanjing, China

  • Yui R, Iketani S, Mikami T, Kubo T (2003) Antisense inhibition of mitochondrial pyruvate dehydrogenase E1 α subunit in anther tapetum causes male sterility. Plant J 34:57–66

    PubMed  CAS  Google Scholar 

  • Zahn LM, Leebens-Mack JH, Arrington JM, Hu Y, Landherr LL, Depamphilis CW, Becker A, Theissen G, Ma H (2006) Conservation and divergence in the AGAMOUS subfamily of MADS-box genes: evidence of independent sub- and neofunctionalization events. Evol Dev 8:30–45

    PubMed  CAS  Google Scholar 

  • Zhang Y, Shewry PR, Jones H, Barcelo P, Lazzeri PA, Halford NG (2001) Expression of antisense Sn RK1 protein kinase sequence causes abnormal pollen development and male sterility in transgenic barley. Plant J 28:431–441

    PubMed  CAS  Google Scholar 

  • Zhang P, Tan HT, Pwee KH, Kumar PP (2004) Conservation of class C function of floral organ development during 300 million years of evolution from gymnosperms to angiosperms. Plant J 37:566–577

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

G. Slavov provided helpful comments on the manuscript. We thank industrial members of the Tree Biosafety and Genomics Research Cooperative (formerly the Tree Genetic Engineering Research Cooperative) and the associated National Science Foundation Industry/University Center for Tree Genetics (NSF #9980423) for their support over the years. We also thank, for their grant support, the USA Department of Energy Agenda 2020 program (DE -FC07097ID13552), the USDA Biotechnology Risk Assessment Competitive grants program (Nos. 2004-39210-15196 and 2003-33120-13964), USDA ARS (No. 58-1230-3-172), USDA-CSREES (No. 2002-35301-12173), NSF-PGRP (No. 0501890), and the Consortium for Biotechnology Research (No. GO12026-157).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven H. Strauss.

Additional information

Communicated by Ronald Sederoff

A.M. Brunner and S.H. Strauss contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brunner, A.M., Li, J., DiFazio, S.P. et al. Genetic containment of forest plantations. Tree Genetics & Genomes 3, 75–100 (2007). https://doi.org/10.1007/s11295-006-0067-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-006-0067-8

Keywords

Navigation