Skip to main content
Log in

Extended MULE Concept for Traffic Congestion Monitoring

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Wireless Sensor Networks are being recently studied to monitor real-time traffic conditions on roads and highways. Idea of using vehicles to convey information from sensors placed alongside roads to the dedicated base stations has also been under scrutiny for some time. In this paper, we argue that a sensor placed on a vehicle instead of a fixed location can effectively sense traffic congestion on the road and report it to the already available WLAN Access Points (APs) instead of the dedicated base stations. This way, instead of deploying series of base stations to collect traffic information, congestion information can be sent over the ISM links between the vehicular sensor nodes and the WLAN APs. This paper investigates, as we call it, the Extended MULE concept by using actual experimental data obtained from the test drives across the city. Our results show that adopting this idea is effective in reporting traffic congestion on the roads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lewis F. (2004) Wireless sensor networks, book chapter, smart environments: Technology, protocols and applications. Wiley, London

    Google Scholar 

  2. Romer K., Mattern F. (2004) The design space of wireless sensor networks. IEEE Wireless Communications 11(6): 54–61

    Article  Google Scholar 

  3. Sohraby K., Minoli D., Znati T. (2007) Wireless sensor networks: Technology, protocols and applications. Wiley-Interscience, London

    Book  Google Scholar 

  4. Shah, R., Roy, S., Jain, S., & Brunette, W. (2003). Data mules: Modelling a three-tier architecture for sparse sensor networks. In Proceedings of 1st IEEE international workshop on sensor network protocols and applications (pp. 30–41). Alaska, USA: IEEE.

  5. Sensor Line, Road Traffic Technology. Available online at http://www.roadtraffictechnology.com/contractors/detection/sensor-line.

  6. Coleri, S., Cheung, S. Y., & Varaiya, P. (2004). Sensor networks for monitoring traffic (available online).

  7. Cho Y. (2007) Estimating velocity fields on a freeway from low-resolution videos. IEEE Transactions on Intelligent Transportation Systems 7(4): 463–469

    Article  Google Scholar 

  8. Li X., Shu W., Li M. (2009) Performance evaluation of vehicle-based mobile sensor networks for traffic monitoring. IEEE Transactions on Vehicular Technology 58(4): 1647–1653

    Article  Google Scholar 

  9. Hull, B., Bychkovsky, V., Chen, K., Goraczko, M., Miu, A., Shih, E., et al. (2006). CarTel: A distributed mobile sensor computing system. In ACM SenSys (pp. 125–138). Colorado, USA: ACM.

  10. LeBrun J., Chuah C., Ghosal D., Zhang M. (2005) Knowledge-based opportunistic forwarding in vehicularWireless Ad Hoc networks. IEEE Vehicular Technology Conference 4: 2289–2293

    Google Scholar 

  11. Zegura, E., Ammar, M., & Zhao, W. (2004). A message ferrying approach for data delivery in sparse mobile Ad Hoc networks. In IEEE MobiHoc (pp. 187–198).

  12. Schmidt T., Townsend A. (2003) Why Wi-Fi wants to be free. ACM Communications 46(5): 47–52

    Article  Google Scholar 

  13. Ott, J., & Kutscher, D. (2005). Exploiting regular hot-spots for drive-thru internet. In Proceedings of KiVS. Kaiser Slantern, Germany: Springer.

  14. Balasubramanian A., Mahajan R., Venkataramani A., Levine B., Zahorjan J. (2008) Interactive WiFi connectivity for moving vehicles. SIGCOMM Computer Communication Review 38(4): 427–438

    Article  Google Scholar 

  15. Vasilescu, I., Kotay, K., Rus, D., Dunbabin, M., & Corke, P. (2005). Data collection, storage, and retrieval with an underwater sensor network. In ACM SenSys (pp. 154–165).

  16. Basios, C. (2005). Defining architecture and key issues towards WLAN roaming. In Proceedings of ConTEL (Vol. 1, pp. 225–230). Zaghreb, Croatia. IEEE.

  17. Best Current Practices for WISP Roaming, WiFi Alliance, Feb (2003).

  18. Geier, J. (2002). The BIG question: 802.11a or 802.11b? Wi-Fi Planet online articles, http://www.wi-fiplanet.com/columns/article.php/961181.

  19. Vistumbler website, http://www.vistumbler.net. (As on August 18, 2009).

  20. Proxim Wireless Networks, Maximizing your 802.11g Investment, White Paper, (2003).

  21. Selvam, T., & Srikanth, S. (2009). Performance study of IEEE 802.11n WLANS. In IEEE COMSNETS (pp. 1–6).

  22. Mishra A., Shin M., Arbaugh W. (2003) An empirical analysis of the IEEE 802.11 MAC layer handoff process. ACM SIGCOMM Computer Communication Review 33(2): 93–102

    Article  Google Scholar 

  23. Cottingham, D., Wassell, I., & Harle, R. (2007). Performance of IEEE 802.11a in vehicular contexts. In 65th IEEE vehicular technology conference (pp. 854–858).

  24. Gass, R., Scott, J., & Diot, C. (2006). Measurements of in-motion 802.11 networking. In Proceedings of WMCSA (pp. 69–74).

  25. Eriksson, J., Balakrishnan, H., & Madden, S. (2008). Cabernet: Vehicular content delivery using WiFi. In 14th ACM Mobicom (pp. 199–210).

  26. Hasan, S. F., Siddique, N. H., & Chakraborty, S. (2009). Impact of RSS on the performance of 3 GPP applications in a Net-on-Roads connection. In 17th telecommunications forum (pp. 266–269).

  27. Hasan, S. F., Siddique, N. H., & Chakraborty, S. (2009). Disruption Model for Net-on-Roads. In 2nd international conference on applications of digital information and web technologies (pp. 282–287).

  28. Hasan, S. F., Siddique, N. H., Chakraborty, S. (2010). On the Effectiveness of WISPr in roadside-to-vehicle communications. IEEE Communications Letters, 14(8) (to appear).

  29. Ott J., Kutscher D. (2005) A disconnection-tolerant transport for drivethru internet environments. Proceedings of IEEE INFOCOM 3: 1849–1862

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Faraz Hasan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasan, S.F., Siddique, N.H. & Chakraborty, S. Extended MULE Concept for Traffic Congestion Monitoring. Wireless Pers Commun 63, 65–82 (2012). https://doi.org/10.1007/s11277-010-0108-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-010-0108-3

Keywords

Navigation