Skip to main content
Log in

Microbial transformation of ginsenoside Rb1 to compound K by Lactobacillus paralimentarius

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, the major ginsenoside Rb1 was transformed into the more pharmacologically active minor compound K by food grade Lactobacillus paralimentarius LH4, which was isolated from kimchi, a traditional Korean fermented food. The enzymatic reaction was analyzed by TLC, HPLC, and NMR. Using the cell-free enzyme of Lactobacillus paralimentarius LH4 at optimal conditions for 30 °C at pH 6.0, 1.0 mg ml−1 ginsenoside Rb1 was transformed into 0.52 mg ml−1 compound K within 72 h, with a corresponding molar conversion yield of 88 %. The cell-free enzyme hydrolyzed the two glucose moieties attached to the C-3 position and the outer glucose moiety attached to the C-20 position of the ginsenoside Rb1. The cell-free enzyme hydrolyzed the ginsenoside Rb1 along the following pathway: ginsenoside Rb1 → gypenoside XVII and ginsenoside Rd → ginsenoside F2 → compound K. Our results indicate that Lactobacillus paralimentarius LH4 has the potential to be applied for the preparation of compound K in the food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akao T, Kida H, Kanaoka M, Hattori M, Kobashi K (1988) Intestinal bacterial hydrolysis is required for the appearance of compound K in ratplasma after oral administration of ginsenoside Rb1 from Panax ginseng. J Pharm Pharmacol 50:1155–1160

    Article  Google Scholar 

  • Chae S, Kang KA, Chang WY, Kim MJ, Lee SJ, Lee YS, Kim HS, Kim DH, Hyun JW (2009) Effect of compound K, a metabolite of ginseng saponin, combined with gamma-ray radiation in human lung cancer cells in vitro and in vivo. J Agric Food Chem 57:5777–5782

    Article  CAS  Google Scholar 

  • Chen GT, Yang M, Song Y, Lu ZQ, Zhang JQ, Huang HL, Wu LJ, Guo DA (2008) Microbial transformation of ginsenoside Rb1 by Acremonium strictum. Appl Microbiol Biotechnol 77:1345–1350

    Article  CAS  Google Scholar 

  • Cheng LQ, Kim MK, Lee JW, Lee YJ, Yang DC (2006) Conversion of major ginsenoside Rb1 to ginsenoside F2 by Caulobacter leidyia. Biotechnol Lett 28:1121–1127

    Article  CAS  Google Scholar 

  • Chi H, Ji GE (2005) Transformation of ginsenosides Rb1 and Re from Panax ginseng by food microorganisms. Biotechnol Lett 27:765–771

    Article  CAS  Google Scholar 

  • Christensen LP (2008) Ginsenosides. Chemistry, biosynthesis, analysis and potential health effects. Adv Food Nutr Res 55:1–99

    Article  Google Scholar 

  • Dong A, Ye M, Guo H, Zheng J, Guo D (2003) Microbial transformation of ginsenoside Rb1 by Rhizopus stolonifer and Curvularia lunata. Biotechnol Lett 25:339–344

    Article  CAS  Google Scholar 

  • Han Y, Sun B, Hu X, Zhang H, Jiang B, Spranger MI, Zhao Y (2007) Transformation of bioactive compounds by Fusarium sacchari fungus isolated from the soil-cultivated ginseng. J Agric Food Chem 55(23):9373–9379

    Article  CAS  Google Scholar 

  • Hou J, Xue J, Wang C, Liu L, Zhang D, Wang Z, Li W, Zheng Y, Sung C (2012) Microbial transformation of ginsenoside Rg3 to ginsenoside Rh2 by Esteya vermicola CNU 120806. World J Microbiol Biotechnol 28(4):1807–1811

    Article  CAS  Google Scholar 

  • Jung JY, Lee SH, Kim JM, Park MS, Bae JW, Hahn Y, Madsen EL, Jeon CO (2011) Metagenomic analysis of Kimchi, a traditional Korean fermented food. Appl Environ Microbiol 77:2264–2274

    Article  CAS  Google Scholar 

  • Keum YS, Park KK, Lee JM, Chun KS, Park JH, Lee SK, Kwon H, Surh YJ (2000) Antioxidant and anti-tumor promoting activities of the methanol extract of heat-processed ginseng. Cancer Lett 150:41–48

    Article  CAS  Google Scholar 

  • Kim WY, Kim JM, Han SB, Lee SK, Kim ND, Park MK, Kim CK, Park JH (2000) Steaming of ginseng at high temperature enhances biological activity. J Nat Prod 63:1702–1704

    Article  CAS  Google Scholar 

  • Lee HU, Bae EA, Han MJ, Kim NJ, Kim DH (2005) Hepatoprotective effect of ginsenoside Rb1 and compound K on tertbutyl hydroperoxide-induced liver injury. Liver Int 25:1069–1073

    Article  CAS  Google Scholar 

  • Mochizuki M, Yoo YC, Matsuzawa K, Sato K, Saiki I, Tono-oka S (1995) Inhibitory effect of tumor metastasis in mice by saponins, ginsenoside Rb2, 20(R)- and 20(S)-ginsenoside Rg3, of Red ginseng. Biol Pharm Bull 18:1197–1202

    Article  CAS  Google Scholar 

  • Ni HX, Yu NJ, Yang XH (2010) The study of ginsenoside on PPAR gamma expression of mononuclear macrophage in type 2 diabetes. Mol Biol Rep 37:2975–2979

    Article  CAS  Google Scholar 

  • Noh KH, Son JW, Kim HJ, Oh DK (2009) Ginsenoside compound K production from ginseng root extract by a thermostable beta-glycosidase from Sulfolobussolfataricus. Biosci Biotechnol Biochem 73:316–321

    Article  CAS  Google Scholar 

  • Oh SH, Yin HQ, Lee BH (2004) Role of the Fas/Fas ligand death receptor pathway in ginseng saponin metabolite induced apoptosis in HepG2 cells. Arch Pharm Res 27:402–406

    Article  CAS  Google Scholar 

  • Park SJ, Youn SY, Ji GE, Park MS (2012) Whole cell biotransformation of major ginsenosides using Leuconostocs and Lactobacilli. Food Sci Biotechnol 21(3):839–844

    Article  CAS  Google Scholar 

  • Quan LH, Cheng LQ, Kim HB, Kim JH, Son NR, Kim SY, Jin HO, Yang DC (2010) Bioconversion of ginsenoside Rd into compound K by Lactobacillus pentosus DC101 isolated from Kimchi. J Ginseng Res 34:288–295

    Article  CAS  Google Scholar 

  • Quan LH, Piao JY, Min JW, Yang DU, Lee HN, Yang DC (2011) Bioconversion of ginsenoside Rb1 into compound K by Leuconostoc citreum LH1 isolated from Kimchi. Braz J Microbiol 42:1227–1237

    Article  CAS  Google Scholar 

  • Tawab MA, Bahr U, Karas M, Wurglics M, Schubert-Zsilavecz M (2003) Degradation of ginsenosides in humans after oral administration. Drug Metab Dispos 31:1065–1071

    Article  Google Scholar 

  • Wakabayashi C, Hasegawa H, Murata J, Saiki I (1997) In vivo anti metastatic action of ginseng protopanaxadiol saponins is based on their intestinal bacterial metabolites after oral administration. Oncol Res 9:411–417

    CAS  Google Scholar 

  • Wakabayashi C, Murakami K, Hasegawa H, Murata J, Saiki I (1998) An intestinal bacterial metabolite of ginseng protopanaxadiol saponins has the ability to induce apoptosis in tumor cells. Biochem Biophys Res Commun 246:725–730

    Article  CAS  Google Scholar 

  • Wang BX, Cui JC, Liu AJ, Wu SK (1983) Studies on the anti-fatigue effect of the saponins of stems and leaves of Panax ginseng (SSLG). J Tradit Chin Med 3:89–94

    CAS  Google Scholar 

  • Wu JY, Gardner BH, Murphy CI, Seals JR, Kensil CR, Recchia J (1992) Saponin adjuvant enhancement of antigen-specific immune responses to an experimental HIV-1 vaccine. J Immunol 148:1519–1525

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by iPET (# 309019-3 & # 111035-3), Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deok-Chun Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quan, LH., Kim, YJ., Li, G.H. et al. Microbial transformation of ginsenoside Rb1 to compound K by Lactobacillus paralimentarius . World J Microbiol Biotechnol 29, 1001–1007 (2013). https://doi.org/10.1007/s11274-013-1260-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-013-1260-1

Keywords

Navigation