Skip to main content
Log in

Antimony Removal from Aqueous Solutions by the Use of Zn-Al Sulphate Layered Double Hydroxide

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This study tested the efficacy of Zn-Al sulphate layered double hydroxides (LDH) as sorbent to remove antimony from circum-neutral solutions. Results of experimentation showed that Sb(V) in the anionic form Sb(OH)6 can be efficiently removed from aqueous solutions through an exchange process with the SO4 2− present in the interlayer; total removal can be achieved within 6–24 h for A ≥2, where A is the ratio of the maximum theoretical anion exchange capacity (AEC) to the initial Sb concentration, both expressed in milliequivalents per liter. The complex rearrangement of the LDH structure to host Sb(OH)6 in the interlayer is correlated to an initial fast removal of the contaminant, followed by a progressive slowing down of the exchange process. The overall speed of the process is again a direct function of A; in practice, the sorbent dose should be carefully evaluated to balance cost/efficacy/timing of the water treatment. Comparison with previous studies documenting Zn-Al sulphate LDH efficacy as arsenate and molybdate sorbent indicates a comparable affinity for As(V) and Sb(V), higher than for Mo(VI). The results of this study reinforce the possible key role of Zn-Al sulphate LDHs in water treatment for pH ranging from circum-neutral to moderately alkaline, thanks to their capability to rearrange the original structure in order to host different-sized/charged anions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ardau, C., Cannas, C., Fantauzzi, M., Rossi, A., & Fanfani, L. (2011a). Arsenic removal from surface waters by hydrotalcite-like sulphate minerals: field evidences from an old mine in Sardinia, Italy. Neues Jahrbuch für Mineralogie – Abhandlungen, 188(1), 49–63.

    Article  CAS  Google Scholar 

  • Ardau, C., Frau, F., Ricci, P. C., & Lattanzi, P. (2011b). Sulphate–arsenate exchange properties of Zn–Al layered double hydroxides: preliminary data. Periodico di Mineralogia, 80(2), 339–349.

    Google Scholar 

  • Ardau, C., Frau, F., Dore, E., & Lattanzi, P. (2012). Molybdate sorption by Zn–Al sulphate layered double hydroxides. Applied Clay Science, 65–66, 128–133.

    Article  Google Scholar 

  • Ardau, C., Frau, F., & Lattanzi, P. (2013). New data on arsenic sorption properties of Zn–Al sulphate layered double hydroxides: influence of competition with other anions. Applied Clay Science, 80–81, 1–9.

    Article  Google Scholar 

  • Atzori, R., Ardau, C., Podda, F., & Frau, F. (2015). Inducing the precipitation of LDH to remove metals from mine-waste drainages. Applied Mineralogy & Advanced Materials - AMAM, 2015(4), 73.

    Google Scholar 

  • Bonaccorsi, E., Merlino, S., & Orlandi, P. (2007). Zincalstibite, a new mineral, and cualstibite: crystal chemical and structural relationships. American Mineralogist, 92, 198–203.

    Article  CAS  Google Scholar 

  • Britto, S., Joseph, S., & Kamath, P. V. (2010). Distinguishing crystallite size effects from those of structural disorder on the powder X-ray diffraction patterns of layered materials. Journal of Chemical Sciences, 122(5), 751–756.

    Article  CAS  Google Scholar 

  • Chen, X.-G., Wu, D.-D., Lv, S.-S., Zhang, L., Ye, Y., & Cheng, J.-P. (2010). Layered double hydroxide/NaSb(OH)6–poly(vinylchloride) nanocomposites: preparation, characterization, and thermal stability. Journal of Applied Polymer Science, 116(4), 1977–1984.

    CAS  Google Scholar 

  • Cidu, R., Biddau, R., Dore, E., Vacca, A., & Marini, L. (2014). Antimony in the soil-water-plant system at the Su Suergiu abandoned mine (Sardinia, Italy): strategies to mitigate contamination. Science of the Total Environment, 497–498, 319–331.

    Article  Google Scholar 

  • Dai, C., Zhou, Z., Zhou, X., & Zhang, Y. (2014). Removal of Sb(III) and Sb(V) from aqueous solutions using nZVI. Water, Air, & Soil Pollution, 225, 1799–1810.

    Article  Google Scholar 

  • Davantès, A., & Lefèvre, G. (2013). In situ real time infrared spectroscopy of sorption of (poly)molybdate ions into layered double hydroxides. Journal of Physical Chemistry A, 117(48), 12922–12929.

    Article  Google Scholar 

  • Filella, M., Belzile, N., & Chen, Y.-W. (2002). Antimony in the environment: a review focused on natural waters. I. Occurrence. Earth-Science Reviews, 57(1–2), 125–176.

    Article  CAS  Google Scholar 

  • Goh, K.-H., Lim, T.-T., & Dong, Z. (2008). Application of layered double hydroxides for removal of oxyanions: a review. Water Research, 42(6–7), 1343–1368.

    Article  CAS  Google Scholar 

  • Guo, X., Wu, Z., & He, M. (2009). Removal of antimony(V) and antimony(III) from drinking water by coagulation–flocculation–sedimentation (CFS). Water Research, 43, 4327–4335.

    Article  CAS  Google Scholar 

  • Hargreaves, A. J., Vale, P., Whelan, J., Constantino, C., Dotro, G., & Cartmell, E. (2016). Mercury and antimony in wastewater: fate and treatment. Water, Air, & Soil Pollution, 227, 89–105.

    Article  Google Scholar 

  • He, M., Wang, X., Wu, F., & Fu, Z. (2012). Antimony pollution in China. Science of the Total Environment, 421–422, 41–50.

    Article  Google Scholar 

  • Hou, X., Bish, D. L., Wang, S.-L., Johnston, C. T., & Kirkpatrick, R. J. (2003). Hydration, expansion, structure, and dynamics of layered double hydroxides. American Mineralogist, 88, 167–179.

    Article  CAS  Google Scholar 

  • Ilavský, J., Barloková, D., & Munka, K. (2015). Antimony removal from water by adsorption to iron-based sorption materials. Water, Air, & Soil Pollution, 226, 2238–2245.

    Article  Google Scholar 

  • Ilgen, A. G., Majs, F., Barker, A. J., Douglas, T. A., & Trainor, T. P. (2014). Oxidation and mobilization of metallic antimony in aqueous systems with simulated groundwater. Geochimica Et Cosmochimica Acta, 132, 16–30.

    Article  CAS  Google Scholar 

  • Kameda, T., Honda, M., & Yoshioka, T. (2011). Removal of antimonate ions and simultaneous formation of a brandholzite-like compound from magnesium oxide. Separation and Purification Technology, 80, 235–239.

    Article  CAS  Google Scholar 

  • Kameda, T., Nakamura, M., & Yoshioka, T. (2012). Removal of antimonate ions from an aqueous solution by anion exchange with magnesium–aluminum layered double hydroxide and the formation of a brandholzite-like structure. Journal of Environmental Science and Health, Part A, 47, 1146–1151.

    Article  CAS  Google Scholar 

  • Kameda, T., Kondo, E., & Yoshioka, T. (2015). Equilibrium and kinetics studies on As(V) and Sb(V) removal by Fe2+-doped Mg–Al layered double hydroxides. Journal of Environmental Management, 151, 303–309.

    Article  CAS  Google Scholar 

  • Kim, J. A., Hwang, S.-J., & Choy, J.-H. (2008). New antimony substituted Mg-Al layered double hydroxides. Journal of Nanoscience and Nanotechnology, 8(10), 5172–5175.

    Article  CAS  Google Scholar 

  • Kolbe, F., Weiss, H., Morgenstern, P., Wennrich, R., Lorenz, W., Schurk, K., et al. (2011). Sorption of aqueous antimony and arsenic species onto akaganeite. Journal of Colloid and Interface Science, 357, 460–465.

    Article  CAS  Google Scholar 

  • Lei, X., Jin, M., & Williams, G. R. (2014). Layered double hydroxides in the remediation and prevention of water pollution. Energy And Environment Focus, 3, 4–22.

    Article  Google Scholar 

  • Lim, T. T., Goh, K. H., & Dong, Z. (2008). Application of layered double hydroxides for removal of oxyanions: a review. Water Research, 42, 1343–1368.

    Article  Google Scholar 

  • Lu, H., Zhu, Z., Zhang, H., Zhu, J., & Qiu, Y. (2015). Simultaneous removal of arsenate and antimonate in simulated and practical water samples by adsorption onto Zn/Fe layered double hydroxide. Chemical Engineering Journal, 276, 365–375.

    Article  CAS  Google Scholar 

  • Lutterotti, L., Voltolini, M., Wenk, H.-R., Bandyopadhyay, K., & Vanorio, T. (2010). Texture analysis of a turbostratically disordered Ca-montmorillonite. American Mineralogist, 95, 98–103.

    Article  CAS  Google Scholar 

  • Menezes, J., da Silva, T., dos Santos, J., Catari, E., Meneghetti, M., da Matta, C., et al. (2014). Layered double hydroxides (LDHs) as carrier of antimony aimed for improving leishmaniasis chemotherapy. Applied Clay Science, 91–92, 127–134.

    Article  Google Scholar 

  • Miao, Y., Han, F., Pan, B., Niu, Y., Nie, G., & Lv, L. (2014). Antimony(V) removal from water by hydrated ferric oxides supported by calcite sand and polymeric anion exchanger. Journal of Environmental Engineering and Science, 26, 307–314.

    CAS  Google Scholar 

  • Mills, S. J., Christy, A. G., Génin, J.-M. R., Kameda, T., & Colombo, F. (2012a). Nomenclature of the hydrotalcite supergroup: natural layered double hydroxides. Mineralogical Magazine, 76(5), 1289–1336.

    Article  CAS  Google Scholar 

  • Mills, S. J., Christy, A. G., Kampf, A. R., Housley, R. M., Favreau, G., Boulliard, J.-C., et al. (2012b). Zincalstibite-9R: the first nine-layer polytype with the layered double hydroxide structure-type. Mineralogical Magazine, 76(5), 1337–1345.

    Article  CAS  Google Scholar 

  • Mohan, D., & Pittman, C. U., Jr. (2007). Arsenic removal from water/wastewater using adsorbents. A critical review. Journal of Hazardous Materials, 142, 1–53.

    Article  CAS  Google Scholar 

  • Okkenhaug, G., Breedveld, G. D., Kirkeng, T., Lægreid, M., Mæhlum, T., & Mulder, J. (2013). Treatment of air pollution control residues with iron rich waste sulfuric acid: does it work for antimony (Sb)? Journal of Hazardous Materials, 248–249, 159–166.

    Article  Google Scholar 

  • Oorts, K., Smolders, E., Degryse, F., Buekers, J., Cascò, G., Cornelis, G., et al. (2008). Solubility and toxicity of antimony trioxide (Sb2O3) in soil. Environmental Science & Technology, 42(12), 4378–4383.

    Article  CAS  Google Scholar 

  • Park, J.-Y., & Kim, J.-H. (2011). Characterization of adsorbed arsenate on amorphous and nano crystalline MgFe-layered double hydroxides. Journal of Nanoparticle Research, 13, 887–894.

    Article  CAS  Google Scholar 

  • Pshinko, G. N., Puzyrnaya, L. N., Yatsik, B. P., & Kosorukov, A. A. (2015). Removal of U(VI) from aqueous media with layered double hydroxide of Zn and Al, intercalated with hexacyanoferrate(II) ions. Radiochemistry, 57(6), 616–620.

    Article  CAS  Google Scholar 

  • Radha, A. V., Vishnu Kamath, P., & Shivakumara, C. (2007). Conservation of order, disorder, and “crystallinity” during anion-exchange reactions among layered double hydroxides (LDHs) of Zn with Al. Journal of Physical Chemistry B, 111, 3411–3418.

    Article  CAS  Google Scholar 

  • Ren, J.–. H., Ma, L. Q., Sun, H.-J., Cai, F., & Luo, J. (2014). Antimony uptake, translocation and speciation in rice plants exposed to antimonite and antimonate. Science of the Total Environment, 475, 83–89.

    Article  CAS  Google Scholar 

  • Sazakli, E., Zouvelou, S. V., Kalavrouziotis, I., & Leotsinidis, M. (2015). Arsenic and antimony removal from drinking water by adsorption on granular ferric oxide. Water Science and Technology, 71(4), 622–629.

    Article  CAS  Google Scholar 

  • Serfor-Armah, Y., Nyarko, B. J. B., Adotey, D. K., Dampare, S. B., & Adomako, D. (2006). Levels of arsenic and antimony in water and sediment from Prestea, a gold mining town in Ghana and its environs. Water, Air, & Soil Pollution, 175, 181–192.

    Article  CAS  Google Scholar 

  • Sheng, G., Hu, J., Li, H., Li, J., & Huang, Y. (2016). Enhanced sequestration of Cr(VI) by nanoscale zero-valent iron supported on layered double hydroxide by batch and XAFS study. Chemosphere, 148, 227–232.

    Article  CAS  Google Scholar 

  • Shtangeeva, I., Bali, R., & Harris, A. (2011). Bioavailability and toxicity of antimony. Journal of Geochemical Exploration, 110, 40–45.

    Article  CAS  Google Scholar 

  • Smith, H. D., Parkinson, G. M., & Hart, R. D. (2005). In situ absorption of molybdate and vanadate during precipitation of hydrotalcite from sodium aluminate solutions. Journal of Crystal Growth, 275, 1665–1671.

    Article  Google Scholar 

  • Sun, W., Xiao, E., Dong, Y., Tang, S., Krumins, V., Ning, Z., et al. (2016). Profiling microbial community in a watershed heavily contaminated by an active antimony (Sb) mine in Southwest China. Science of the Total Environment, 550, 297–308.

    Article  CAS  Google Scholar 

  • Targan, F., Tirtom, V.N., & Akkuş, B. (2013). Removal of antimony(III) from aqueous solution by using grey and red Erzurum clay and application to the Gediz River sample. ISRN Analytical Chemistry, 2013, Article ID 962781, 8 pages.

  • U.S. Geological Survey (2015). Minerals commodity summaries 2015. U.S. Geological Survey, 196 p. doi:10.3133/70140094.

  • Ungureanu, G., Santos, S., Boaventura, R., & Botelho, C. (2015a). Biosorption of antimony by brown algae S. muticum and A. nodosum. Environmental Engineering and Management Journal, 14(2), 455–463.

    CAS  Google Scholar 

  • Ungureanu, G., Santos, S., Boaventura, R., & Botelho, C. (2015b). Arsenic and antimony in water and wastewater: overview of removal techniques with special reference to latest advances in adsorption. Journal of Environmental Management, 151, 326–342.

    Article  CAS  Google Scholar 

  • WHO (World Health Organization) (2011). Guidelines for drinking-water quality, 4th edition, Geneva. 564 p. ISBN: 978 92 4 154815 1.

  • Wilson, S. C., Lockwood, P. V., Ashley, P. M., & Tighe, M. (2010). The chemistry and behavior of antimony in the soil environment with comparisons to arsenic: a critical review. Environmental Pollution, 158, 1169–1181.

    Article  CAS  Google Scholar 

  • Witzke, T., & Raade, G. (2000). Zincowoodwardite [Zn1-xAlx(SO4)x/2(OH)2·(H2O)n], a new mineral of the hydrotalcite group. Neues Jahrbuch Fur Mineralogie-Monatshefte, 10, 455–465.

    Google Scholar 

  • Wu, Z., He, M., Guo, X., & Zhou, R. (2010). Removal of antimony (III) and antimony (V) from drinking water by ferric chloride coagulation: competing ion effect and the mechanism analysis. Separation and Purification Technology, 76, 184–190.

    Article  CAS  Google Scholar 

  • Wu, F., Fu, Z., Liu, B., Mo, C., Chen, B., Corns, W., et al. (2011). Health risk associated with dietary co-exposure to high levels of antimony and arsenic in the world’s largest antimony mine area. Science of the Total Environment, 409, 3344–3351.

    Article  CAS  Google Scholar 

  • Yang, L., Shahrivari, Z., Liu, P. K. T., Sahimi, M., & Tsotsis, T. T. (2005). Removal of trace levels of arsenic and selenium from aqueous solutions by calcined and uncalcined layered double hydroxides. Industrial & Engineering Chemistry Research, 44, 6804–6815.

    Article  CAS  Google Scholar 

  • Zhang, J., Li, Y., Zhou, J., Chen, D., & Qian, G. (2012). Chromium (VI) and zinc (II) waste water co-treatment by forming layered double hydroxides: mechanism discussion via two different processes and application in real plating water. Journal of Hazardous Materials, 205–206, 111–117.

    Article  Google Scholar 

  • Zhou, Z., Dai, C., Zhou, X., Zhao, J., & Zhang, Y. (2015). The removal of antimony by novel NZVI-zeolite: the role of iron transformation. Water, Air, & Soil Pollution, 76, 226.

    Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Italian Ministry of Education, University and Research (MIUR; PRIN 2010–2011 grant to P. Lattanzi) and by the Consorzio AUSI (Consorzio per la Promozione delle Attività Universitarie del Sulcis-Iglesiente, grant to F. Frau). We are extremely grateful to Elisabetta Dore for her assistance in the collection of experimental data. Additional laboratory support was provided by Ilenia Pusceddu for her undergraduate thesis work (Tesi di Laurea magistrale in Scienze della Natura, Università di Cagliari, 2014). We thank Francesco Di Benedetto for assistance with data fitting calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Ardau.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 60 kb)

ESM 2

(DOCX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ardau, C., Frau, F. & Lattanzi, P. Antimony Removal from Aqueous Solutions by the Use of Zn-Al Sulphate Layered Double Hydroxide. Water Air Soil Pollut 227, 344 (2016). https://doi.org/10.1007/s11270-016-3048-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3048-z

Keywords

Navigation