Skip to main content
Log in

Tracing the Metal Pollution History of the Tisza River Through the Analysis of a Sediment Depth Profile

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The vertical profiles of 20 major and trace metals were investigated along a 180-cm-long sediment core, which was sampled at Kiss-Janosne-Holt Tisza, an oxbow lake located in the upper part of the Tisza River in Hungary. The vertical profiles showed sharp peaks at different depths, reflecting historical pollution events and unusual changes of river water characteristics. Five different groups of metals, containing metals which were strongly correlated and showing a similar behaviour, could be distinguished by factor analysis. Six areas, with variable degrees and types of contamination, were classified in the sediment core with cluster analysis. The most polluted sections were found in the upper 50-cm part (significantly contaminated by Cu, Zn, Pb, Cd and Hg) and the deeper 100–120-cm part (characterised by high concentrations of metals associated with mining activities, such as Fe and Mn, as well as Cu, Zn and Pb). In recent years, important pollution events, such as the one which took place in March of 2000, were the reason for pollution of the upper sediment layers, whereas mining activities during the last century were responsible for the pollution of the deeper core sections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Appleby, P. G., & Oldfield, F. (1992). Application of lead-210 to sedimentation studies. Uranium-series disequilibrium applications to earth, marine and environmental sciences pp. 731–778. Oxford: Clarendon.

    Google Scholar 

  • Baciu, C. (2002). Issues concerning the Tisza basin in Romania. Budapest: Twining of River Basins Tisza-Scheldt.

    Google Scholar 

  • Baeyens, W., Meuleman, C., Muhaya, B., & Leermakers, M. (1998). Behaviour and speciation of mercury in the Scheldt estuary (water, sediments and benthic organisms). Hydrobiologia, 366, 63–79. doi:10.1023/A:1003124310848.

    Article  Google Scholar 

  • Braun, M., Toth, A., Alapi, K., Devai, G., Lakatos, G., Posta, J., et al. (2000). Environmental history of oxbow ponds: A sediment geochemical study of Marot-Zugi-Holt-Tisza, NE Hungary. Ecology of River Valleys. TISCIA monograph series. Szeged., 133–138.

  • Catallo, W. J., Schlenker, M., Gambrell, R. P., & Shane, B. S. (1995). Toxic-chemicals and trace-metals from urban and rural louisiana lakes—recent historical profiles and toxicological significance. Environmental Science & Technology, 29(6), 1436–1445. doi:10.1021/es00006a003.

    Article  CAS  Google Scholar 

  • Ciszewski, D. (2003). Heavy metals in vertical profiles of the middle Odra River overbank sediments: Evidence for pollution changes. Water, Air, and Soil Pollution, 143(1–4), 81–98. doi:10.1023/A:1022825103974.

    Article  CAS  Google Scholar 

  • Clark, M. (1985). A Fortran program for constrained sequence-slotting based on minimum combined path length. Computers & Geosciences, 11(5), 605–617.

    Article  Google Scholar 

  • Clark, M. (1995). INQUA working group on data-handling methods. Newsletter 13, January 1995. Depth-matching usinf PC-Slot version 1.6. (http://www.chrono.qub.ac.uk/inqua/news13/n13-mc.htm).

  • Clark, M. (1996). PC-SLOT. 1.7. Clayton, Australia: Monash University. doi:10.1016/0098-3004(85)90089-5.

  • Dauvalter, V., & Rognerud, S. (2001). Heavy metal pollution in sediments of the Pasvik River drainage. Chemosphere, 42(1), 9–18. doi:10.1016/S0045-6535(00)00094-1.

    Article  CAS  Google Scholar 

  • Delaune, R. D., Patrick, W. H., & Buresh, R. J. (1978). Sedimentation-rates determined by Cs-137 dating in a rapidly accreting salt-marsh. Nature, 275(5680), 532–533. doi:10.1038/275532a0.

    Article  CAS  Google Scholar 

  • Fleit, E., & Lakatos, G. (2003). Accumulative heavy metal patterns in the sediment and biotic compartments of the Tisza watershed. Toxicology Letters, 140, 323–332. doi:10.1016/S0378-4274(03)00029-8.

    Article  Google Scholar 

  • Forstner, U. (1990). Inorganic sediment chemistry and elemental speciation. Sediments: Chemistry and toxicity of in-place pollutants. Michigan: Lewis, (405 pp).

    Google Scholar 

  • Forstner, U., & Wittmann, G. T. W. (1983). Metal pollution in the aquatic environment. Berlin: Springer, (486 pp).

    Google Scholar 

  • Gallagher, K. A., Wheeler, A. J., & Orford, J. D. (1996). An assessment of the heavy metal pollution of two tidal marshes on the north-west coast of Ireland. Biology and Environment—Proceedings of the Royal Irish Academy. Section B: Biological, Geological, and Chemical Science, 96B(3), 177–188.

    Google Scholar 

  • Gambrell, R. P., DeLaune, R. D., Patrick, W. H., & Jugsujinda, A. (2001). Mercury distribution in sediment profiles of six Louisiana Lakes. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 36(5), 661–676. doi:10.1081/ESE-100103752.

    CAS  Google Scholar 

  • Gardner, A. (2000). Sequence-slotting recovers dating disasters. Newsletter of Inqua-Sub Commission on Data-Handling Methods. 20: (online access http://www.kv.geo.uu.se/inqua/index.htm).

  • Godoy, J. M., Moreira, I., Wanderley, C., Simoes, F. F., & Mozeto, A. A. (1998). An alternative method for the determination of excess Pb-210 in sediments. Radiation Protection Dosimetry, 75(1–4), 111–115.

    CAS  Google Scholar 

  • Gordon, A. D. (1980). SLOTSEQ: A Fortran IV program for comparing two sequences of observations. Computers & Geosciences, 6, 7–20. doi:10.1016/0098-3004(80)90003-5.

    Article  Google Scholar 

  • Hamar, J., & Sarkany-Kiss, A. (eds.) (1999). The Upper Tisza Valley. Tisza Monograph Series, Tisza Klub’s Publications, Szeged, pp. 502.

  • Hungarian Ministry of Environment and Water. (2000). The limit values for the protection of quality of ground water resources and soils. Order No. 10/2000.

  • Iskandar, I. K., & Keeney, D. R. (1974). Concentration of heavy-metals in sediment cores from selected Wisconsin Lakes. Environmental Science & Technology, 8(2), 165–170. doi:10.1021/es60087a001.

    Article  Google Scholar 

  • Judith, K. (2001). Tisza river at risk. Archive report. Greenpeace.

  • Knox, J. C. (1987). Historical valley floor sedimentation in the Upper Mississippi Valley. Annals of the Association of American Geographers. Association of American Geographers, 77(2), 224–244. doi:10.1111/j.1467-8306.1987.tb00155.x.

    Article  Google Scholar 

  • Kudo, A., Fujikawa, Y., Mitui, M., Sugahara, M., Tao, G., Zheng, J., et al. (2000). History of mercury migration from Minamata Bay to the Yatsushiro Sea. Water Science and Technology, 42(7–8), 177–184.

    CAS  Google Scholar 

  • Laszlo, F., Csanyi, B., & Literathy, P. (2000). Cyanide and heavy metals accidental pollution in the Tisza river basin: Consequences on water quality monitoring and assessment. Monitoring Tailor-Made III International workshop on information for sustainable water management. Nunspeet, The Netherlands.

  • Lee, S. V., & Cundy, A. B. (2001). Heavy metal contamination and mixing processes in sediments from the Humber Estuary, Eastern England. Estuarine, Coastal and Shelf Science, 53(5), 619–636. doi:10.1006/ecss.2000.0713.

    Article  CAS  Google Scholar 

  • Leermakers, M., Nguyen, H. L., Kurunczi, S., Vanneste, B., Galletti, S., & Baeyens, W. (2003). Determination of methylmercury in environmental samples using statitic headspace gas chromatography and atomic fluorescence detection after aqueous phase ethylation. Journal of Analytical and Bioanalytical Chemistry, 377, 327–333.

    Article  CAS  Google Scholar 

  • Macklin, M. G., Ridgway, J., Passmore, D. G., & Rumsby, B. T. (1994). The use of overbank sediment for geochemical mapping and contamination assessment—results from selected English and Welsh floodplains. Applied Geochemistry, 9(6), 689–700. doi:10.1016/0883-2927(94)90028-0.

    Article  CAS  Google Scholar 

  • Nguyen, H. L., Leermakers, M., & Baeyens, W. (2004a). Heavy metals in the Lake Balaton: watercolumn, suspended matter, sediment and biota. The Science of the Total Environment, 340(1–3), 213–230. doi:10.1016/j.scitotenv.2004.07.032.

    Google Scholar 

  • Nguyen, H. L., Leermakers, M., Kurunczi, S., Bozo, L., & Baeyens, W. (2004b). Mercury distribution and speciation in Lake Balaton, Hungary. The Science of the Total Environment, 340, 231–246. doi:10.1016/j.scitotenv.2004.08.016.

    Google Scholar 

  • Osan, J., Kurunczi, S., Török, S., & Van Grieken, R. (2002). X ray analysis of river sediment of the Tisza (Hungary): identification of particles from a mine pollution event. Spectrochimica Acta B, 57, 413–422. doi:10.1016/S0584-8547(01)00405-0.

    Article  Google Scholar 

  • Osan, J., Török, S., Alföldy, B., Alsecz, A., Falkenberg, G., Baik, S. Y., et al. (2007). Comparison of sedimentary pollution in the rivers of the Hungarian Upper Tisza Region using non-destructive analytical techniques. Spectrochimica Acta Part B, 62, 123–136. doi:10.1016/j.sab.2007.02.005.

    Article  Google Scholar 

  • Park, J., & Presley, B. J. (1997). Trace metals contamination of sediments and organisms from the Swan Lake area of Galveston Bay. Environmental Pollution, 98(2), 209–221. doi:10.1016/S0269-7491(97)00137-1.

    Article  CAS  Google Scholar 

  • Regnell, O., Hammar, T., Helgee, A., & Troedsson, B. (2001). Effects of anoxia and sulfide on concentrations of total and methyl mercury in sediment and water in two Hg-polluted lakes. Canadian Journal of Fisheries and Aquatic Sciences, 58(3), 506–517. doi:10.1139/cjfas-58-3-506.

    Article  CAS  Google Scholar 

  • Salomons, W., & Forstner, U. (1984). Metals in the hydrocycle. Berlin: Springer, (349 pp).

    Google Scholar 

  • Schwarcz, H. P. (2002). Chronometric dating in archaeology: a review. Accounts of Chemical Research, 35(8), 637–643. doi:10.1021/ar010039o.

    Article  CAS  Google Scholar 

  • VITUKI Water Resources Research Centre. (2003). Hydroinfo. http://www.vituki.hu. June. 2003.

  • Von Gunten, H. R., Sturm, M., & Moser, R. N. (1997). 200-year record of metals in lake sediments and natural background concentrations. Environmental Science & Technology, 31(8), 2193–2197. doi:10.1021/es960616h.

    Article  Google Scholar 

  • Walker, D. (1964). A modified vallentyne mud sampler. Ecology, 45, 642–644. doi:10.2307/1936118.

    Article  Google Scholar 

  • WWF. (2002). Ecological effects of mining spills in the Tisza River system in 2000. Report. WWF World Wildlife Fund International–Danube–Carpathian Programme, Vienna, Austria.

  • Yang, H. D., & Rose, N. L. (2003). Distribution of mercury in six lake sediment cores across the UK. The Science of the Total Environment, 304(1–3), 391–404. doi:10.1016/S0048-9697(02)00584-3.

    Article  CAS  Google Scholar 

  • Ying, Q. Y., Higman, J., Thompson, J., O’Toole, T., & Campbell, D. (2002). Characterization and spatial distribution of heavy metals in sediment from Cedar and Ortega rivers subbasin. Journal of Contaminant Hydrology, 54(1–2), 19–35. doi:10.1016/S0169-7722(01)00162-0.

    Google Scholar 

Download references

Acknowledgments

We are very grateful to Bela Csapo, teacher of Tarpa Primary School, for his help during the sampling expedition. This research was funded by the Flemish Government and Hungarian Education Ministry through the Flemish–Hungarian Bilateral Scientific and Technological Co-operation under contract project Nr. B-00/76 and by the Flemish government through a grant for H. L. Nguyen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Leermakers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, H.L., Braun, M., Szaloki, I. et al. Tracing the Metal Pollution History of the Tisza River Through the Analysis of a Sediment Depth Profile. Water Air Soil Pollut 200, 119–132 (2009). https://doi.org/10.1007/s11270-008-9898-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-008-9898-2

Keywords

Navigation