Skip to main content
Log in

Mutation rate in Velvet tobacco mottle virus varies between genomic region and virus variant but is not influenced by obligatory mirid transmission

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Genomic mutation in plant viruses of cultivated plants is known to be influenced by virus, host and vector, but the factors influencing mutation in viruses of native plants in natural ecosystems are rarely studied. We have tested the effect of mode of transmission on mutation in Velvet tobacco mottle virus (VTMoV), a mirid-vectored sobemovirus associated with Nicotiana velutina, an Australian native xerophyte growing in a region isolated from anthropogenic influences. Two variants of VTMoV (K1 and R17) were passaged monthly in the alternative experimental plant host, N. clevelandii, for 2 years, either by mechanical inoculation or by transmission with the mirid Cyrtopeltis nicotianae. Sequence variations were scored after 24 passages in regions of the genome containing the open reading frames (ORFs) for the P1 and coat protein (CP). The mean mutation rate was 6.83 × 10−4 nt/site year, but a higher overall rate was observed for the K1 (satellite −) than the R17 (satellite +) variant. The P1 ORF showed a higher frequency of non-synonymous mutations than the CP. No clear association was found between either mutation site or mutation rate and the mode of transmission, indicating that obligatory mirid transmission had not exerted a specific bottle-neck effect on sequence variation during the experimental time frame. Failure to detect any sequence motifs linked to vector transmission suggests that a specific capsid-stylet interaction is not required for transmission by mirids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. C.M. Kearney, M.J. Thomson, K.E. Roland, Arch. Virol. 144, 1513–1526 (1999)

    Article  PubMed  CAS  Google Scholar 

  2. A. Ali, M.J. Roossinck, Virology 404, 279–283 (2010)

    Article  PubMed  CAS  Google Scholar 

  3. B. Moury, F. Fabre, R. Senoussi, Proc. Natl. Acad. Sci. 104, 17891–17896 (2007)

    Article  PubMed  CAS  Google Scholar 

  4. M. Betancourt, A. Fereres, A. Fraile, F. García-Arenal, J. Virol. 82, 12416–12421 (2008)

    Article  PubMed  CAS  Google Scholar 

  5. A. Ali, H. Li, W.L. Schneider, D.J. Sherman, S. Gray, D. Smith, M.J. Roossinck, J. Virol. 80, 8345–8350 (2006)

    Article  PubMed  CAS  Google Scholar 

  6. C. Jridi, J.-F. Martin, V. Marie-Jeanne, G. Labonne, S. Blanc, J. Virol. 80, 2349–2357 (2006)

    Article  PubMed  CAS  Google Scholar 

  7. H. Li, M. Roossinck, J. Virol. 78, 10582–10587 (2004)

    Article  PubMed  CAS  Google Scholar 

  8. J.W. Randles, C. Davies, T. Hatta, A.R. Gould, R.I.B. Francki, Virology 108, 111–122 (1981)

    Article  PubMed  CAS  Google Scholar 

  9. K.S. Gibb, J.W. Randles, Ann. Appl. Biol. 112, 427–437 (1988)

    Article  Google Scholar 

  10. K.S. Gibb, J.W. Randles, Ann Appl Biol 116, 513–521 (1990)

    Article  Google Scholar 

  11. K.S. Gibb, J.W. Randles, ed. by K.F. Harris. Advances in disease vector research, vol 7 (Springer, New York, 1991), pp. 1–17

  12. K.S. Gibb, J.W. Randles, Ann Appl Biol 115, 11–15 (1989)

    Article  Google Scholar 

  13. K. Arthur, S. Dogra, J.W. Randles, Arch. Virol. 155, 1893–1896 (2010)

    Article  PubMed  CAS  Google Scholar 

  14. R.I.B. Francki, C.J. Grivell, K.S. Gibb, Virology 148, 381–384 (1986)

    Article  PubMed  CAS  Google Scholar 

  15. P.L. Atreya, C.D. Atreya, T.P. Pirone, Proc. Nat. Acad. Sci. USA 88, 7887–7891 (1991)

    Article  PubMed  CAS  Google Scholar 

  16. C.M.R. Varanda, M.S.M.R. Silva, M.d.R.F Félix, M.I.E. Clara, Eur. J. Plant Pathol. 130, 165–172 (2011)

    Article  CAS  Google Scholar 

  17. A.F.S. Mello, A.J. Clark, K.L. Perry, J. Gen. Virol. 91, 545–551 (2010)

    Article  PubMed  CAS  Google Scholar 

  18. C. Bonneau, C. Brugidou, L. Chen, R.N. Beachy, C. Fauquet, Virology 244, 79–86 (1998)

    Article  PubMed  CAS  Google Scholar 

  19. M. Meier, H. Paves, A. Olspert, T. Tamm, E. Truve, Virus Genes 32, 321–326 (2006)

    Article  PubMed  CAS  Google Scholar 

  20. K. Sivakumaran, B.C. Fowler, D.L. Hacker, Virology 252, 376–386 (1998)

    Article  PubMed  CAS  Google Scholar 

  21. A.J. Drummond, B. Ashton, M. Cheung, A. Cooper, C. Duran, M. Field, J. Heled, M. Kearse, S. Markowitz, R. Moir, S. Stones-Havas, S. Sturrock, T. Thiere, A. Wilson, Geneious v5.4 (2011), http://www.geneious.com/

  22. K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, S. Kumar, Mol. Biol. Evol. 28, 2731–2739 (2011)

    Article  PubMed  CAS  Google Scholar 

  23. W.-H. Li, J. Mol. Evol. 36, 96–99 (1993)

    Article  PubMed  CAS  Google Scholar 

  24. P. Pamilo, N.O. Bianchi, Mol. Biol. Evol. 10, 271–281 (1993)

    PubMed  CAS  Google Scholar 

  25. S.F. Elena, S. Bedhomme, P. Carrasco, J.M. Cuevas, F. de la Iglesia, G. Lafforgue, J. Lalić, À. Pròsper, N. Tromas, M.P. Zwart, Mol. Plant Microbe Interact. 24, 287–293 (2011)

    Article  PubMed  CAS  Google Scholar 

  26. D. Fargette, A. Pinel, M. Rakotomalala, E. Sangu, O. Traore, D. Sereme, F. Sorho, S. Issaka, E. Hebrard, Y. Sere, Z. Kanyeka, G. Konate, J. Virol. 82, 3584–3589 (2008)

    Article  PubMed  CAS  Google Scholar 

  27. A.J. Gibbs, D. Fargette, F. Garcia-Arenal, M.J. Gibbs, J. Gen. Virol. 91, 13–22 (2010)

    Article  PubMed  CAS  Google Scholar 

  28. R.P.P. Almeida, G.M. Bennett, M.D. Anhalt, C.-W. Tsai, P. O’Grady, Mol. Ecol. 18, 136–146 (2009)

    Article  PubMed  Google Scholar 

  29. R. French, D.C. Stenger, Virology 343, 179–189 (2005)

    Article  PubMed  CAS  Google Scholar 

  30. W. Schneider, M. Roossinck, J. Virol. 75, 6566–6571 (2001)

    Article  PubMed  CAS  Google Scholar 

  31. K. Ohshima, S. Akaishi, H. Kajiyama, R. Koga, A.J. Gibbs, J. Gen. Virol. 91, 788–801 (2010)

    Article  PubMed  CAS  Google Scholar 

  32. D. Fargette, A. Pinel, Z. Abubakar, O. Traore, C. Brugidou, S. Fatogoma, E. Hebrard, M. Choisy, Y. Sere, C.M. Fauquet, G. Konate, J. Virol. 78, 3252–3261 (2004)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

K. Arthur was funded by the C.J. Everard Scholarship of the University of Adelaide. We thank P. Ingram and C. Watson for maintaining plants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Arthur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arthur, K., Collins, N.C. & Randles, J.W. Mutation rate in Velvet tobacco mottle virus varies between genomic region and virus variant but is not influenced by obligatory mirid transmission. Virus Genes 45, 575–580 (2012). https://doi.org/10.1007/s11262-012-0801-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-012-0801-2

Keywords

Navigation