Skip to main content
Log in

Fundamental Understanding of Environmental Effects on Adhesion and Friction: Alcohol and Water Adsorption Cases

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Layers of adsorbed vapor molecules have profound impacts on adhesion and friction. This article reviews fundamental aspects of alcohol and water adsorption effects on adhesion and friction. Capillary force, a component of adhesion force which arises from the liquid meniscus that forms between contacting surfaces, shows a strong vapor partial pressure dependence that is not explained by theory which neglects the adsorbed layer. Theoretical calculations accounting for the adsorbed layer give good agreement with experimentally measured adhesion forces at the nanoscale. Nanoscale friction measurements are also strongly affected by the meniscus and adsorbed layer. Conventional contact mechanics theory could not fully explain the load dependence of nanoscale friction, especially at vapor partial pressures below saturation. However, when the effect of the meniscus is included in theoretical analysis of experimental data, it is found that the friction depends on the shear strength change in the contract area and the dragging of the meniscus formed around the contact. The meniscus dragging term is dominant at low loads but becomes inconsequential at higher loads. When the adsorbed layer assumes structural ordering or causes tribochemical reactions, their adhesion and friction behaviors are further complicated and deviated from simple contact mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Somorjai, G.A.: Introduction to Surface Chemistry and Catalysis. Wiley, New York (1994)

    Google Scholar 

  2. Adamson, A.W.: Physical Chemistry of Surfaces. 5th edn. Wiley, New York (1990)

  3. Brunauer, S., Emmett, P.H., Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938)

    Article  CAS  Google Scholar 

  4. Brunauer, S., Deming, L.S., Deming, W.E., Teller, E.: On a theory of the van der Waals adsorption of gases. J. Am. Chem. Soc. 62, 1723–1732 (1940)

    Article  CAS  Google Scholar 

  5. Asay, D.B., Kim, S.H.: Molar volume and adsorption isotherm dependence of capillary forces in nanoasperity contacts. Langmuir 23, 12174–12178 (2007)

    Article  CAS  Google Scholar 

  6. Barnette, A.L., Asay, D.B., Janik, M.J., Kim, S.H.: Adsorption isotherm and orientation of alcohols on hydrophilic SiO2 under ambient conditions. J. Phys. Chem. C 113, 10632–10641 (2009)

    Article  CAS  Google Scholar 

  7. Asay, D.B., Kim, S.H.: Effects of adsorbed water layer structure on adhesion force of silicon oxide nanoasperity contact in humid ambient. J. Chem. Phys. 124, 174712 (2006)

    Article  Google Scholar 

  8. Asay, D.B., Kim, S.H.: Evolution of the adsorbed water layer structure on silicon oxide at room temperature. J. Phys. Chem. B 109, 16760–16763 (2005)

    Article  CAS  Google Scholar 

  9. Thomas, R.C., Houston, J.E., Crooks, R.M., Kim, T., Michalske, T.A.: Probing adhesion forces at the molecular scale. J. Am. Chem. Soc. 117, 3830–3834 (1995)

    Article  CAS  Google Scholar 

  10. Hamaker, H.C.: The London—Van Der Waals attraction between spherical particles. Physica 4, 1058–1072 (1937)

    Article  CAS  Google Scholar 

  11. Visser, J.: Particle adhesion and removal: a review. Part. Sci. Technol. 13, 169–196 (1995)

    Article  CAS  Google Scholar 

  12. Cappella, B., Dietler, G.: Force–distance curves by atomic force microscopy. Surface Sci. Rep. 34, 1–104 (1999)

    Article  CAS  Google Scholar 

  13. Owens, D.K., Wendt, R.: Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 13, 1741–1747 (1969)

    Article  CAS  Google Scholar 

  14. Johnson, C.A., Lenhoff, A.M.: Adsorption of charged latex particles on mica studied by atomic force microscopy. J. Colloid Interface Sci. 179, 587–599 (1996)

    Article  CAS  Google Scholar 

  15. Butt, H.J., Kappl, M.: Normal capillary forces. Adv. Colloid Interface Sci. 146, 48–60 (2009)

    Article  CAS  Google Scholar 

  16. Evans, R., Marconi, U.M.B., Tarazona, P.: Fluids in narrow pores—adsorption, capillary condensation and critical-points. J. Chem. Phys. 84, 2376–2399 (1986)

    Article  CAS  Google Scholar 

  17. Binggeli, M., Mate, C.M.: Influence of capillary condensation of water on nanotribology studied by force microscopy. Appl. Phys. Lett. 65, 415–417 (1994)

    Article  CAS  Google Scholar 

  18. Xu, L., Lio, A., Hu, J., Ogletree, D.F., Salmeron, M.: Wetting and capillary phenomena of water on mica. J. Phys. Chem. B 102, 540–548 (1998)

    Article  CAS  Google Scholar 

  19. He, M.Y., Blum, A.S., Aston, D.E., Buenviaje, C., Overney, R.M., Luginbuhl, R.: Critical phenomena of water bridges in nanoasperity contacts. J. Chem. Phys. 114, 1355–1360 (2001)

    Article  CAS  Google Scholar 

  20. Hsiao, E., Marino, M.J., Kim, S.H.: Effects of gas adsorption isotherm and liquid contact angle on capillary force for sphere-on-flat and cone-on-flat geometries. J. Colloid Interface Sci. 352, 549–557 (2010)

    Article  CAS  Google Scholar 

  21. Kralchevsky, P.A., Nagayama, K.: Particles at fluid interfaces and membranes. Elsevier, Amsterdam (2001)

    Google Scholar 

  22. Good, R.J.: Contact-angle, wetting, and adhesion—a critical-review. J. Adhes. Sci. Technol. 6, 1269–1302 (1992)

    Article  CAS  Google Scholar 

  23. de Boer, M.P., de Boer, P.C.T.: Thermodynamics of capillary adhesion between rough surfaces. J. Colloid Interface Sci. 311, 171–185 (2007)

    Article  Google Scholar 

  24. Farshchi-Tabrizi, M., Kappl, M., Cheng, Y.J., Gutmann, J., Butt, H.J.: On the adhesion between fine particles and nanocontacts: an atomic force microscope study. Langmuir 22, 2171–2184 (2006)

    Article  CAS  Google Scholar 

  25. Fisher, L.R., Gamble, R.A., Middlehurst, J.: The Kelvin equation and the capillary condensation of water. Nature 290, 575–576 (1981)

    Article  CAS  Google Scholar 

  26. Israelachvili, J.N.: Intermolecular and surface forces. Academic Press Inc., San Diego (1992)

    Google Scholar 

  27. Orr, F.M., Scriven, L.E., Rivas, A.P.: Pendular rings between solids-meniscus properties and capillary force. J. Fluid Mech. 67, 723–742 (1975)

    Article  Google Scholar 

  28. Xiao, X.D., Qian, L.M.: Investigation of humidity-dependent capillary force. Langmuir 16, 8153–8158 (2000)

    Article  CAS  Google Scholar 

  29. Strawhecker, K., Asay, D.B., McKinney, J., Kim, S.H.: Reduction of adhesion and friction of silicon oxide surface in the presence of n-propanol vapor in the gas phase. Tribol. Lett. 19, 17–21 (2005)

    Article  CAS  Google Scholar 

  30. Asay, D.B., Dugger, M.T., Kim, S.H.: In-situ vapor-phase lubrication of MEMS. Tribol. Lett. 29, 67–74 (2008)

    Article  CAS  Google Scholar 

  31. Asay, D.B., Dugger, M.T., Ohlhausen, J.A., Kim, S.H.: Macro- to nanoscale wear prevention via molecular adsorption. Langmuir 24, 155–159 (2008)

    Article  CAS  Google Scholar 

  32. Marino, M.J., Hsiao, E., Chen, Y.S., Eryilmaz, O.L., Erdemir, A., Kim, S.H.: Understanding run-in behavior of diamond-like carbon friction and preventing diamond-like carbon wear in humid air. Langmuir 27, 12702–12708 (2011)

    Article  CAS  Google Scholar 

  33. Marino, M.J., Hsiao, E., Bradley, L.C., Eryilmaz, O.L., Erdemir, A., Kim, S.H.: Is ultra-low friction needed to prevent wear of diamond-like carbon (DLC)? An alcohol vapor lubrication study for stainless steel/DLC interface. Tribol. Lett. 42, 285–291 (2011)

    Article  CAS  Google Scholar 

  34. McFadden, C., Soto, C., Spencer, N.D.: Adsorption and surface chemistry in tribology. Tribol. Int. 30, 881–888 (1997)

    Article  CAS  Google Scholar 

  35. McFadden, C.F., Gellman, A.J.: Metallic friction: the effect of molecular adsorbates. Surf. Sci. 409, 171–182 (1998)

    Article  CAS  Google Scholar 

  36. Furlong, O., Li, Z.J., Gao, F., Tysoe, W.T.: Surface and tribological chemistry of water and carbon dioxide on copper surfaces. Tribol. Lett. 31, 167–176 (2008)

    Article  CAS  Google Scholar 

  37. Lancaster, J.K.: A review of the influence of environmental humidity and water on friction lubrication and wear. Tribol. Int. 23, 371–389 (1990)

    Article  CAS  Google Scholar 

  38. Gellman, A.J.: Vapor lubricant transport in MEMS devices. Tribol. Lett. 17, 455–461 (2004)

    Article  Google Scholar 

  39. Ashurst, W.R., Carraro, C., Maboudian, R.: Vapor phase anti-stiction coatings for MEMS. IEEE Trans. Device Mater. Reliab. 3, 173–178 (2003)

    Article  CAS  Google Scholar 

  40. Kim, S.H., Asay, D.B., Dugger, M.T.: Nanotribology and MEMS. Nano Today 2, 22–29 (2007)

    Article  Google Scholar 

  41. Asay, D.B., Hsiao, E., Kim, S.H.: Effects of adsorbate coverage and capillary on nano-asperity friction in atmosphere containing organic vapor. J. Appl. Phys. 110, 064326 (2011)

    Article  Google Scholar 

  42. Adams, G.G., Muftu, S., Azhar, N.M.: A scale-dependent model for multi-asperity contact and friction. J. Tribol. Trans. ASME 125, 700–708 (2003)

    Article  Google Scholar 

  43. Barnette, A.L., Asay, D.B., Kim, D., Guyer, B.D., Lim, H., Janik, M.J., Kim, S.H.: Experimental and density functional theory study of the tribochemical wear behavior of SiO(2) in humid and alcohol vapor environments. Langmuir 25, 13052–13061 (2009)

    Article  CAS  Google Scholar 

  44. Enachescu, M., van den Oetelaar, R.J.A., Carpick, R.W., Ogletree, D.F., Flipse, C.F.J., Salmeron, M.: Observation of proportionality between friction and contact area at the nanometer scale. Tribol. Lett. 7, 73–78 (1999)

    Article  CAS  Google Scholar 

  45. Lantz, M.A., Oshea, S.J., Welland, M.E., Johnson, K.L.: Atomic-force-microscope study of contact area and friction on NbSe2. Phys. Rev. B 55, 10776–10785 (1997)

    Article  CAS  Google Scholar 

  46. Grierson, D.S., Flater, E.E., Carpick, R.W.: Accounting for the JKR–DMT transition in adhesion and friction measurements with atomic force microscopy. J. Adhes. Sci. Technol. 19, 291–311 (2005)

    Article  CAS  Google Scholar 

  47. Maugis, D.: Adhesion of spheres—the JKR–DMT transition using a Dugdale model. J. Colloid Interface Sci. 150, 243–269 (1992)

    Article  CAS  Google Scholar 

  48. Ewing, G.E.: Thin film water. J. Phys. Chem. B 108, 15953–15961 (2004)

    Article  CAS  Google Scholar 

  49. Scherge, M., Li, X., Schaefer, J.A.: The effect of water on friction of MEMS. Tribol. Lett. 6, 215–220 (1999)

    Article  CAS  Google Scholar 

  50. Barthel, A., Gregory, M., Kim, S.: Humidity effects on friction and wear between dissimilar metals. Tribol. Lett. 48, 305–313 (2012)

    Article  CAS  Google Scholar 

  51. Barnette, A.L., Asay, D.B., Ohlhausen, J.A., Dugger, M.T., Kim, S.H.: Tribochemical polymerization of adsorbed n-pentanol on SiO2 during rubbing: when does it occur and is it responsible for effective vapor phase lubrication? Langmuir 26, 16299–16304 (2010)

    Article  CAS  Google Scholar 

  52. Harrison, J.A., Perry, S.S.: Friction in the presence of molecular lubricants and solid/hard coatings. MRS Bull. 23, 27–31 (1998)

    CAS  Google Scholar 

  53. Yu, J.X., Kim, S.H., Yu, B.J., Qian, L.M., Zhou, Z.R.: Role of tribochemistry in nanowear of single-crystalline silicon. ACS Appl. Mater. Interfaces 4, 1585–1593 (2012)

    Article  CAS  Google Scholar 

  54. Tu, A., Kwag, H.R., Barnette, A.L., Kim, S.H.: Water adsorption isotherms on CH3-, OH-, and COOH-terminated organic surfaces at ambient conditions measured with PM-RAIRS. Langmuir 28, 15263–15269 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Science Foundation (Grant No. 1000021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong H. Kim.

Additional information

Submitted for the ACS symposium special issue of Tribology Letters.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barthel, A.J., Al-Azizi, A. & Kim, S.H. Fundamental Understanding of Environmental Effects on Adhesion and Friction: Alcohol and Water Adsorption Cases. Tribol Lett 50, 157–168 (2013). https://doi.org/10.1007/s11249-013-0116-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-013-0116-z

Keywords

Navigation