Skip to main content
Log in

The Relationship Between Contact Mechanics and Adhesion in Nanoscale Contacts Between Non-Polar Molecular Monolayers

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

An Erratum to this article was published on 10 August 2014

Abstract

Atomic and friction force microscopy were employed to examine adhesion and friction between dodecanethiol self-assembled monolayers in pure media as well as in two-component heptane/acetone mixtures. In media that did not contain hydrogen bond donors, the pull-off forces were found to be in very good agreement with theoretic predictions based on the Lifshitz theory. As the hydrogen bond donor ability of the medium increased, the adhesion energy was found to be increasingly underestimated by the model, illustrating the importance of the medium–medium interactions outside the contact area in determining the adhesive properties of the contact at the nanoscale. Exceptionally, in n-octanol, the pull-off forces were considerably lower than predicted and a dual slope linear friction–load relation was observed. These observations were rationalized by the formation of physisorbed layers of octanol on the surfaces. The friction–load relationship in the other media was found to be dependent on the magnitude of adhesion. For weakly adhering systems, the friction–load relationship was linear, but as adhesion increased, a sublinear relationship was observed. The data were rationalized by treating the friction as the sum of an adhesion-dependent shear term characterized by a surface shear strength τ and a molecular plowing term characterized by a coefficient of friction μ. Thus, Amontons’ law appears to describe the limiting case of very weak adhesion where viscoelastic plowing is primarily responsible for energy dissipation, while a sublinear friction–load relationship emerges in other situations due to the dissipation of energy in shearing adhesive contacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mate, C.M.: Triibology on the Small Scale: A Bottom Up Approach to Friction. Lubrication and Wear. Oxford University Press Inc., New York (2008)

    Google Scholar 

  2. Bhushan, B.: Nanotribology and nanomechanics of MEMS/NEMS and BioMEMS/BioNEMS materials and devices. Microelectronic Eng 84, 387–412 (2007)

    Article  CAS  Google Scholar 

  3. Schwartz, D.K.: Mechanisms and Kinetics of Self-Assembled Monolayer Formation. Annu. Rev. Phys. Chem. 52, 107–137 (2001)

    Article  CAS  Google Scholar 

  4. Vericat, C., Vela, M.E., Benitez, G., Carrob, P., Salvarezza, R.C.: Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system. Chem. Soc. Rev. 39, 1805–1834 (2010)

    Article  CAS  Google Scholar 

  5. Onclin, S., Ravoo, B.J., Reinhoudt, D.N.: Engineering Silicon Oxide Surfaces Using Self-Assembled Monolayers. Angew. Chem. Int. Ed. 44, 6282–6304 (2005)

    Article  CAS  Google Scholar 

  6. Binning, G., Quate, C.F., Gerber, C.: Atomic Force Microscope. Phys. Rev. Let. 56, 930–933 (1986)

    Article  Google Scholar 

  7. Mate, C.M., McClelland, G.M., Erlandsson, R., Chiang, S.: Atomic-scale friction of a tungsten tip on a graphite surface. Phys. Rev. Lett. 59, 1942–1945 (1987)

    Article  CAS  Google Scholar 

  8. Frisbie, C.D., Rozsnyai, L.F., Noy, A., Wrighton, M.S., Lieber, C.M.: Functional group imaging by chemical force microscopy. Science 265, 2071–2074 (1994)

    Article  CAS  Google Scholar 

  9. Noy, A., Frisbie, C.D., Rozsnyai, L.F., Wrighton, M.S., Lieber, C.M.: Chemical force microscopy: exploiting chemically-modified tips to quantify adhesion, friction, and functional group distributions in molecular assemblies. J. Am. Chem. Soc. 117, 7943–7951 (1995)

    Article  CAS  Google Scholar 

  10. Bowden, F.P., Tabor, D.: The friction and Lubrication of Solids. Oxford University Press Inc., New York (1958)

    Google Scholar 

  11. Bowden, F.P., Tabor, D.: The area of contact between stationary and between moving surfaces. Proc. R. Soc. London A 169, 391–413 (1939)

    Article  Google Scholar 

  12. Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. Proc. R. Soc. London A 295, 300–319 (1966)

    Article  CAS  Google Scholar 

  13. Maugis, D., Pollock, H.M.: Surface forces, feformation and adherence at metal microcontacts. Acta Metall. 32, 1323–1334 (1984)

    Article  CAS  Google Scholar 

  14. Derjaguin, B.V., Muller, V.M., Toporov, Y.P.: Effect of contact deformations on the adhesion of particles. J Coll Interface Sci 53, 314–325 (1975)

    Article  CAS  Google Scholar 

  15. Muller, V.M., Derjaguin, B.V., Toporov, Y.P.: On two methods of calculation of the force of sticking of an elastic sphere to a rigid plane. Colloids Surf. 7, 251–259 (1983)

    Article  CAS  Google Scholar 

  16. Johnson, K.L., Kendall, K., Roberts, A.D.: Surface energy and the contact of elastic solids. Proc. R. Soc. London A 324, 301–313 (1971)

    Article  CAS  Google Scholar 

  17. Homola, H.M., Israelachvilli, J.N., McGuiggan, P.M., Gee, M.L.: Fundamental experimental studies in tribology: the transition from “interfacial” friction of undamaged molecularly smooth surfaces to “normal” friction with wear. Wear 136, 65–83 (1990)

    Article  CAS  Google Scholar 

  18. Ruths, M., Alcantar, N.A., Israelachvili, J.N.: Boundary friction of aromatic silane self-assembled monolayers measured with the surface forces apparatus and friction force microscopy. J. Phys. Chem. B 107, 11149–11157 (2003)

    Article  CAS  Google Scholar 

  19. Colburn, T.J., Leggett, G.J.: Influence of solvent environment and tip chemistry on the contact mechanics of tip-sample interactions in friction force microscopy of self-assembled monolayers of mercaptoundecanoic acid and dodecanethiol. Langmuir 23, 4959–4964 (2007)

    Article  CAS  Google Scholar 

  20. Hurley, C.R., Leggett, G.J.: Influence of the solvent environment on the contact mechanics of tip-sample interactions in friction force microscopy of poly(ethylene terephthalate) films. Langmuir 22, 4179–4183 (2006)

    Article  CAS  Google Scholar 

  21. Yoshizawa, H., Chen, Y.L., Israelachvili, J.N.: Fundamental mechanisms of interfacial friction. 1. Relation between adhesion and friction. J. Phys. Chem. 97, 4128–4140 (1993)

    Article  CAS  Google Scholar 

  22. Brukman, M.J., Marco, G.O., Dunbar, T.D., Boardman, L.D., Carpick, R.W.: Nanotribological properties of alkanephosphonic acid self-assembled monolayers on aluminum oxide: effects of fluorination and substrate crystallinity. Langmuir 22, 3988–3998 (2006)

    Article  CAS  Google Scholar 

  23. Flater, E.E., Ashurst, W.R., Carpick, R.W.: Nanotribology of octadecyltrichlorosilane monolayers and silicon: self-mated versus unmated interfaces and local packing density effects. Langmuir 23, 9242–9252 (2007)

    Article  CAS  Google Scholar 

  24. Clear, S.C., Nealey, P.F.: Chemical force microscopy study of adhesion and friction between surfaces functionalized with self-assembled monolayers and immersed in solvents. J. Coll. Interface Sci. 213, 238–250 (1999)

    Article  CAS  Google Scholar 

  25. Carpick, R.W., Agraıt, N., Ogletree, D.F., Salmeron, M.: Measurement of interfacial shear (friction) with an ultrahigh vacuum atomic force microscope. J. Vac. Sc. Technol. B 14, 1289–1295 (1996)

    Article  CAS  Google Scholar 

  26. Meyer, E., Luthi, R., Howald, L., Bammerlin, M., Guggisberg, M., Guntherodt, H.J.: Site-specific friction force spectroscopy. J. Vac. Sci. Technol. B 14, 1285–1288 (1996)

    Article  CAS  Google Scholar 

  27. Ruths, M.: Friction of mixed and single-component aromatic monolayers in contacts of different adhesive strength. J. Phys. Chem. B 110, 2209–2218 (2006)

    Article  CAS  Google Scholar 

  28. Ruths, M., Lundgren, S., Danerlov, K., Persson, K.: Friction of fatty acids in nanometer-sized contacts of different adhesive strength. Langmuir 24, 1509–1517 (2008)

    Article  CAS  Google Scholar 

  29. Yang, Y., Ruths, M.: Friction of polyaromatic thiol monolayers in adhesive and nonadhesive contacts. Langmuir 25, 12151–12159 (2009)

    Article  CAS  Google Scholar 

  30. Briscoe, B.J., Evans, D.C.B.: The shear properties of Langmuir-Blodgett layers. Proc. R. Soc. London A 380, 389–407 (1982)

    Article  CAS  Google Scholar 

  31. Busuttil, K., Geoghegan, M., Hunter, C.A., Leggett, G.J.: Contact mechanics of nanometer-scale molecular contacts: correlation between adhesion, friction, and hydrogen bond thermodynamics. J. Am. Chem. Soc. 133, 8625–8632 (2011)

    Article  CAS  Google Scholar 

  32. Busuttil, K., Nikogeorgos, N., Zhang, Z., Geoghegan, M., Hunter, C.A., Leggett, G.J.: The mechanics of nanometre-scale molecular contacts. Faraday Disc 156, 325–341 (2012)

    Article  CAS  Google Scholar 

  33. Nikogeorgos, N., Hunter, C. A., Leggett, G. J.: The relationship between molecular contact thermodynamics and surface contact mechanics. Langmuir, in press

  34. Feldman, K., Tervoort, T., Smith, P., Spencer, N.D.: Toward a force spectroscopy of polymer surfaces. Langmuir 14, 372–378 (1998)

    Article  CAS  Google Scholar 

  35. Israelachvili, J.N.: Intermolecular & Surface Forces, 2nd edn. Academic Press, Elsevier Ltd, London (1991)

    Google Scholar 

  36. Sirghi, L., Kylian, O., Gilliland, D., Ceccone, G., Rossi, F.: Cleaning and hydrophilization of atomic force microscopy silicon probes. J. Phys. Chem. B 110, 25975–25981 (2006)

    Article  CAS  Google Scholar 

  37. Lo, Y.-S., Huefner, N.D., Chan, W.S., Dryden, P., Beebe, B., Hagenhoff Jr, T.P.: Organic and inorganic contamination on commercial AFM cantilevers. Langmuir 15, 6522–6526 (1999)

    Article  CAS  Google Scholar 

  38. Hutter, J.L., Bechhoefer, J.: Calibration of atomic-force microscope tips. Rev. Sci. Instrum. 64, 1868–1873 (1993)

    Article  CAS  Google Scholar 

  39. Butt, H.J., Jaschke, M.: Calculation of thermal noise in atomic force microscopy. Nanotechnol 6, 1–7 (1995)

    Article  Google Scholar 

  40. Stark, R.W., Drobek, T., Heckl, W.M.: Thermomechanical noise of a free v-shaped cantilever for atomic-force microscopy. Ultramicroscopy 86, 207–215 (2001)

    Article  CAS  Google Scholar 

  41. Ohler, B.: Cantilever spring constant determination using laser Doppler vibrometry. Rev. Sci. Instrum. 78, 063701 (2007)

    Article  Google Scholar 

  42. Chong, K.S.L., Sun, S., Leggett, G.J.: Measurement of the kinetics of photo-oxidation of self-assembled monolayers using friction force microscopy. Langmuir 21, 3903–3909 (2005)

    Article  CAS  Google Scholar 

  43. Ogletree, D.F., Carpick, R.W., Salmeron, M.: Calibration of frictional forces in atomic force microscopy. Rev. Sci. Instrum. 67, 3298–3306 (1996)

    Article  CAS  Google Scholar 

  44. Varenberg, M., Etsion, I., Halperin, G.: An improved wedge calibration method for lateral force in atomic force microscopy. Rev. Sci. Instrum. 74, 3362–3367 (2003)

    Article  CAS  Google Scholar 

  45. Zenhausern, F., Adrian, M., Heggeler-Bordied, B.T., Eng, L.M., Descouts, P.: DNA and RNA imaged by scanning force microscopy: influence of molecular-scale friction. Scanning 14, 212–217 (1992)

    Article  CAS  Google Scholar 

  46. Carpick, R.: http://mandm.engr.wisc.edu/faculty_pages/carpick/toolbox.htm

  47. Graftstrom, S., Neitzert, M., Hagen, T., Ackerman, J., Probst, R., Wortge, M.: The role of topography and friction for the image constrast in lateral force microscopy. Nanotechnology 4, 143–151 (1993)

    Article  Google Scholar 

  48. Overney, R., Meyer, E.: Tribological investigations using friction force microscopy. MRS Bull. 18, 26–34 (1993)

    CAS  Google Scholar 

  49. Lifshitz, E.M.: Dokl. Akad. Nauk SSSR 97, 643–646 (1954)

    Google Scholar 

  50. Lifshitz, E.M.: The theory of molecular attrative forces between solids. Dokl. Akad. Nauk SSSR 100, 879–883 (1955)

    Google Scholar 

  51. Lifshitz, E.M.: The theory of molecular attractive forces between solids. Sov. Phys. JETP 2, 73–83 (1956)

    Google Scholar 

  52. Kerchove, F.V., Vijlder, M.D.: Some physicochemical properties of the binary mixtures heptane-propanone and heptane-ethyl acetate. J. Chem. Eng. Data 22, 333–337 (1977)

    Article  Google Scholar 

  53. Sild, S., Karelson, M.: A general QSPR treatment for dielectric constants of organic compounds. J. Chem. Inf. Comput. Sci. 42, 360–367 (2002)

    Article  CAS  Google Scholar 

  54. Shinomiya, T.: Dielectric dispersion and intermolecular association for 28 pure liquid alcohols. The position dependence of hydroxyl group in the hydrocarbon chain. Bull. Chem. Soc. Jpn. 62, 908–915 (1989)

    Article  CAS  Google Scholar 

  55. Mato, F., Polanco, F.: Propiedades dielectricas de mezclass liquidas. Anales De Quimica 72, 280–284 (1976)

    CAS  Google Scholar 

  56. Marino, G., Pineiro, M.M., Iglesias, M., Orge, B., Tojo, J.: Temperature dependence of binary mixing properties for acetone, methanol, and linear aliphatic alkanes (C6–C8). J. Chem. Eng. Data 46, 728–734 (2001)

    Article  CAS  Google Scholar 

  57. Acosta, J., Arce, A., Rodil, E., Soto, A.: Densities, speeds of sound, refractive indices, and the corresponding changes of mixing at 25°C and atmospheric pressure for systems composed by ethyl acetate, hexane, and acetone. J. Chem. Eng. Data 46, 1176–1180 (2001)

    Article  CAS  Google Scholar 

  58. Savini, C.G., Winterhalter, D.R., Ness, H.C.V.: Heats of mixing of some alcohol-hydrocarbon systems. J. Chem. Eng. Data 10, 168–171 (1965)

    Article  CAS  Google Scholar 

  59. Reedy, E.D.: Thin-coating contact mechanics with adhesion. J. Mater. Res. 21, 2660–2668 (2006)

    Article  CAS  Google Scholar 

  60. Reedy, E.D.: Contact mechanics for coated spheres that includes the transition from weak to strong adhesion. J. Mater. Res. 22, 2617–2622 (2007)

    Article  CAS  Google Scholar 

  61. Carpick, R.W., Olgetree, F.D., Salmeron, M.: A general equation for fitting contact area and friction vs load measurements. J. Coll. Interface Sci. 211, 395–400 (1999)

    Article  CAS  Google Scholar 

  62. Sivebaeka, I.M., Samoilova, V.N., Persson, B.N.J.: Squeezing molecularly thin alkane lubrication films: Layering transitions and wear. Tribol. Lett. 16, 195–200 (2004)

    Article  Google Scholar 

  63. Carpick, R.W., Salmeron, M.: Scratching the surface: fundamental investigations of tribology with atomic force microscopy. Chem. Rev. 97, 1163–1194 (1997)

    Article  CAS  Google Scholar 

  64. Houston, J.E., Doelling, C.M., Vanderlick, T.K., Hu, Y., Scoles, G., Wenzl, I., Lee, R.R.: Comparative study of the adhesion, friction, and mechanical properties of CF3- and CH3- terminated alkanethiol monolayers. Langmuir 21, 3926–3932 (2005)

    Article  CAS  Google Scholar 

  65. Lio, A., Charych, D.H., Salmeron, M.: Comparative atomic force microscopy study of the chain length dependence of frictional properties of alkanethiols on gold and alkylsilanes on mica. J. Phys. Chem. B 101, 3800–3805 (1997)

    Article  CAS  Google Scholar 

  66. Mate, C.M.: Atomic-force-microscope study of polymer lubricants on silicon surfaces. Phys. Rev. Lett. 68, 3323–3326 (1992)

    Article  CAS  Google Scholar 

  67. Tupper, K.J., Brenner, D.W.: Molecular dynamics simulations of friction in self-assembled monolayers. Thin Solid Films 253, 185–189 (1994)

    Article  CAS  Google Scholar 

  68. Tutein, A.B., Stuart, S.J., Harrison, J.A.: Role of defects in compression and friction of anchored hydrocarbon chains on diamond. Langmuir 16, 291–296 (2000)

    Article  CAS  Google Scholar 

  69. Chandross, M., Lorenz, C.D., Stevens, M.J., Grest, G.S.: Simulations of nanotribology with realistic probe tip models. Langmuir 24, 1240–1246 (2008)

    Article  CAS  Google Scholar 

  70. Knippenberg, M.T., Mikulski, P.T., Dunlap, B.I., Harrison, J.A.: Atomic contributions to friction and load for tip–self-assembled monolayers interactions. Phys. Rev. B 78, 235409 (2008)

    Article  Google Scholar 

  71. Kiely, J.D., Houston, J.E.: Contact hysteresis and friction of alkanethiol self-assembled monolayers on gold. Langmuir 15, 4513–4519 (1999)

    Article  CAS  Google Scholar 

  72. Brewer, N.J., Beake, B.D., Leggett, G.J.: Friction force microscopy of self-assembled monolayers: influence of adsorbate alkyl chain length, terminal group chemistry, and scan velocity. Langmuir 17, 1970–1974 (2001)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham J. Leggett.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s11249-014-0387-z.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikogeorgos, N., Leggett, G.J. The Relationship Between Contact Mechanics and Adhesion in Nanoscale Contacts Between Non-Polar Molecular Monolayers. Tribol Lett 50, 145–155 (2013). https://doi.org/10.1007/s11249-013-0105-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-013-0105-2

Keywords

Navigation