Skip to main content
Log in

Correlation Between Probe Shape and Atomic Friction Peaks at Graphite Step Edges

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Molecular dynamics simulation and atomic force microscopy are used to study the nature of friction between nanoscale tips and graphite step edges. Both techniques show that the width of the lateral force peak as the probe moves up a step is directly correlated with the size and shape of the tip. The origin of that relationship is explored and the similarities and differences between the measurements and simulations are discussed. The observations suggest that the relationship between lateral force peak width and tip geometry can be used as a real-time monitor for tip wear during atomic scale friction measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Müller, T., Lohrmann, M., Kässer, T., Marti, O., Mlynek, J., Krausch, G.: Frictional force between a sharp asperity and a surface Step. Phys. Rev. Lett. 79(25), 5066 (1997)

    Article  Google Scholar 

  2. Hausen, F., Nielinger, M., Ernst, S., Baltruschat, H.: Nanotribology at single crystal electrodes: influence of ionic adsorbates on friction forces studied with AFM. Electrochimica Acta 53(21), 6058 (2008)

    Article  CAS  Google Scholar 

  3. Hölscher, H., Ebeling, D., Schwarz, U.: Friction at atomic-scale surface steps: experiment and theory. Phys. Rev. Lett. 101(24), 246105 (2008)

    Article  Google Scholar 

  4. Steiner, P., Gnecco, E., Krok, F., Budzioch, J., Walczak, L., Konior, J., Szymonski, M., Meyer, E.: Atomic-scale friction on stepped surfaces of ionic crystals. Phys. Rev. Lett. 106(18), 186104 (2011)

    Article  Google Scholar 

  5. Mate, C., McClelland, G., Erlandsson, R., Chiang, S.: Atomic-scale friction of a tungsten tip on a graphite surface. Phys. Rev. Lett. 59(17), 1942 (1987)

    Article  CAS  Google Scholar 

  6. Dienwiebel, M., Verhoeven, G., Pradeep, N., Frenken, J., Heimberg, J., Zandbergen, H.: Superlubricity of graphite. Phys. Rev. Lett. 92(12), 126101 (2004)

    Article  Google Scholar 

  7. Lee, C., Li, Q., Kalb, W., Liu, X., Berger, H., Carpick, R., Hone, J.: Frictional characteristics of atomically thin sheets. Science 328(5974), 76 (2010)

    Article  CAS  Google Scholar 

  8. Filleter, T., Paul, W., Bennewitz, R.: Atomic structure and friction of ultrathin films of KBr on Cu(100). Phys. Rev. B. 77(3), 035430 (2008)

    Article  Google Scholar 

  9. Green, C., Lioe, H., Cleveland, J., Proksch, R., Mulvaney, P., Sader, J.: Normal and torsional spring constants of atomic force microscope cantilevers. Rev. Sci. Instrum. 75, 1988 (2004)

    Article  CAS  Google Scholar 

  10. Young, W.: Roark’s Formulas for Stress and Strain. 6 edn. McGraw-Hill, New York (1989)

  11. Horcas, I., Fernandez, R., Gomez-Rodriguez, J., Colchero, J., Gómez-Herrero, J., Baro, A.: WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78(1), 013705 (2007)

    Article  CAS  Google Scholar 

  12. Niimi, Y., Matsui, T., Kambara, H., Tagami, K., Tsukada, M., Fukuyama, H.: Scanning tunneling microscopy and spectroscopy of the electronic local density of states of graphite surfaces near monoatomic step edges. Phys. Rev. B. 73(8), 085421 (2006)

    Article  Google Scholar 

  13. Schneider, T., Stoll, E.: Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions. Phys. Rev. B. 17(3), 1302 (1978)

    Article  CAS  Google Scholar 

  14. Stuart, S., Tutein, A., Harrison, J.: A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112, 6472 (2000)

    Article  CAS  Google Scholar 

  15. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1 (1995)

    Article  CAS  Google Scholar 

  16. Liu, J., Notbohm, J., Carpick, R., Turner, K.: Method for characterizing nanoscale wear of atomic force microscope tips. ACS Nano 4(7), 3763 (2010)

    Article  CAS  Google Scholar 

  17. Liu, J., Grierson, D.S., Moldovan, N., Notbohm, J., Li, S., Jaroenapibal, P., O’Connor, S.D., Sumant, A.V., Neelakantan, N., Carlisle, J.A., Turner, K.T., Carpick, R.W.: Preventing nanoscale wear of atomic force microscopy tips through the use of monolithic ultrananocrystalline diamond probes. Small 6(10), 1140 (2010)

    Article  CAS  Google Scholar 

  18. Johnson, K., Woodhouse, J.: Stick-slip motion in the atomic force microscope. Tribol. Lett. 5(2), 155 (1998)

    Article  CAS  Google Scholar 

  19. Socoliuc, A., Bennewitz, R., Gnecco, E., Meyer, E.: Transition from stick-slip to continuous sliding in atomic friction: entering a new regime of ultralow friction. Phys. Rev. Lett. 92(13), 134301 (2004)

    Article  CAS  Google Scholar 

  20. Medyanik, S., Liu, W., Sung, I., Carpick, R.: Predictions and observations of multiple slip modes in atomic-scale friction. Phys. Rev. Lett. 97(13), 136106 (2006)

    Article  Google Scholar 

  21. Dong, Y., Vadakkepatt, A., Martini, A.: Analytical models for atomic friction. Tribol. Lett. 44(3), 367 (2011)

    Article  CAS  Google Scholar 

  22. Hunter, L., Siegel, S.: The variation with temperature of the principal elastic moduli of NaCl near the melting point. Phys. Rev. 61, 84 (1942)

    Article  CAS  Google Scholar 

  23. Grimsditch, M.: Shear elastic modulus of graphite. J. Phys. C. 16(5), 143 (1983)

    Article  Google Scholar 

  24. Ebbesen, T.W., Hiura, H.: Graphene in 3-dimensions: towards graphite origami. Adv. Mater. 7(6), 582 (1995)

    Article  CAS  Google Scholar 

  25. Khurshudov, A., Kato, K.: Wear of the atomic force microscope tip under light load, studied by atomic force microscopy. Ultramicroscopy 60(1), 11 (1995)

    Article  CAS  Google Scholar 

  26. Agrawal, R., Moldovan, N., Espinosa, H.: An energy-based model to predict wear in nanocrystalline diamond atomic force microscopy tips. J Appl. Phys. 106, 064311 (2009)

    Article  Google Scholar 

  27. Jacobs, T., Gotsmann, B., Lantz, M., Carpick, R.: On the application of transition state theory to atomic-scale wear. Tribol. Lett. 39(3), 257 (2010)

    Article  Google Scholar 

  28. Killgore, J.P., Geiss, R.H., Hurley, D.C.: Continuous measurement of atomic force microscope tip wear by contact resonance force microscopy. Small 7(8), 1018 (2011)

    Article  CAS  Google Scholar 

  29. Kim, K.-H., Moldovan, N., Ke, C., Espinosa, H.D., Xiao, X., Carlisle, J.A., Auciello, O.: Novel ultrananocrystalline diamond probes for high-resolution low-wear nanolithographic techniques. Small 1(8-9), 866 (2005)

    Article  CAS  Google Scholar 

  30. Maier, S., Gnecco, E., Baratoff, A., Bennewitz, R., Meyer, E.: Atomic-scale friction modulated by a buried interface: combined atomic and friction force microscopy experiments. Phys. Rev. B 78(4), 045432 (2008)

    Article  Google Scholar 

  31. Dongmo, S., Troyon, M., Vautrot, P., Delain, E., Bonnet, N.: Blind restoration method of scanning tunneling and atomic force microscopy images. J. Vac. Sci. Tech. B 14(2), 1552 (1996)

    Article  CAS  Google Scholar 

  32. Dongmo, L., Villarrubia, J., Jones, S., Renegar, T., Postek, M., Song, J.: Experimental test of blind tip reconstruction for scanning probe microscopy. Ultramicroscopy 85(3), 141 (2000)

    Article  CAS  Google Scholar 

  33. Bykov, V., Gologanov, A., Shevyakov, V.: Test structure for SPM tip shape deconvolution. Appl. Phys. A. 66(5), 499 (1998)

    Article  CAS  Google Scholar 

  34. Itoh, H., Fujimoto, T., Ichimura, S.: Tip characterizer for atomic force microscopy. Rev. Sci. Instrum. 77(10), 103704 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the U.S. National Science Foundation for its support through Grants No. CMMI 1068552 and CMMI-1068741. We are grateful to Dr. Hendrik Hölscher and Dr. Qunyang Li for the insightful discussions when initiating this work and to Tevis D. B. Jacobs and Graham Wabiszewski for their help to acquire TEM images. P.E. would like to acknowledge financial support from the Natural Sciences and Engineering Research Council (NSERC) of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yalin Dong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, Y., Liu, X.Z., Egberts, P. et al. Correlation Between Probe Shape and Atomic Friction Peaks at Graphite Step Edges. Tribol Lett 50, 49–57 (2013). https://doi.org/10.1007/s11249-012-0072-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-012-0072-z

Keywords

Navigation