Skip to main content
Log in

The Reduction-Coupled Oxo Activation (ROA) Mechanism Responsible for the Catalytic Selective Activation and Functionalization of n-Butane to Maleic Anhydride by Vanadium Phosphate Oxide

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

We report here the results of density functional theory quantum mechanical (QM) studies of the detailed chemical mechanism underlying the n-butane selective oxidation to form maleic anhydride (MA) on vanadyl pyrophosphate [(VO)2P2O7] and vanadyl phosphate [VOPO4] surfaces. This QM-derived mechanism differs substantially from previous suggestions but is in excellent agreement with key experimental observations. We find that the O(1)=P bond of the oxidized X1 phase of the VOPO4 surface is the active site for initiating the VPO chemistry, by extracting the H from the n-butane C–H bond. This contrasts sharply with previous suggestions, all of which involved the V=O bonds. The ability of O(1)=P to cleave alkane C–H bonds arises from a new unique mechanism that decouples the proton transfer and electron transfer components of this H atom transfer reaction. We find that the juxtaposition of a highly reducible V+5 next to the P=O bond but coupled via a bridging oxygen dramatically enhances the activity of the P=O bond to extract the proton from an alkane, while simultaneously transferring the electron to the V to form V+4. This Reduction-Coupled Oxo Activation (ROA) mechanism had not been known prior to these QM studies, but we believe that it may lead to a new strategy in designing selective catalysts for alkane activation and functionalization, and indeed it may be responsible for the selective oxidation by a number of known mixed metal oxide catalysts. To demonstrate the viability of this new ROA mechanism, we examine step by step the full sequence of reactions from n-butane to MA via two independent pathways. We that find that every step is plausible, with a highest reaction barrier of 21.7 kcal/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. Hodnett BK (2000) Heterogeneous catalytic oxidation. Wiley, New York

    Google Scholar 

  2. Ballarini N, Cavani F, Cortelli C, Ligi S, Pierelli F, Trifiro F, Fumagalli C, Mazzoni G, Monti T (2006) Top Catal 38:147

    Article  CAS  Google Scholar 

  3. Centi G, Trifiro F, Ebner JR, Franchetti VM (1988) Chem Rev 88:55

    Article  CAS  Google Scholar 

  4. Cheng MJ, Nielsen RJ, Tahir-Kheli J, Goddard WA III (2011) Phys Chem Chem Phys 13:9831

    Article  CAS  Google Scholar 

  5. Thompson DJ, Fanning MO, Hodnett B (2003) J Mol Catal A 198:125

    Article  CAS  Google Scholar 

  6. Haras A, Duarte HA, Salahub DR, Witko M (2002) Surf Sci 513:367

    Article  CAS  Google Scholar 

  7. Robert V, Borshch SA, Bigot B (1997) J Mol Catal A 119:327

    Article  CAS  Google Scholar 

  8. Schiott B, Jorgensen KA, Hoffmann R (1991) J Phys Chem 95:2297

    Article  Google Scholar 

  9. Goddard III WA (1996) Recent developments in quantum mechanics and molecular dynamics with applications to problems in materials, catalysis, and biochemistry. In: Proceedings of 10th Institute for Fundamental Chemistry 11th symposium, Kyoto, Japan, May 1995, p 57

  10. Gleaves JT, Ebner JR, Kuechler TC (1988) Catal Rev Sci Eng 30:49

    Article  CAS  Google Scholar 

  11. Schuurman Y, Gleaves JT (1994) Ind Eng Chem Res 33:2935

    Article  CAS  Google Scholar 

  12. Zhang-Lin Y, Forissier M, Sneeden RP, Vedrine JC, Volta JC (1994) J Catal 145:256

    Article  CAS  Google Scholar 

  13. Chen B, Munson EJ (2002) J Am Chem Soc 124:1638

    Article  CAS  Google Scholar 

  14. Coulston GW, Bare SR, Kung H, Birkeland K, Bethke GK, Harlow R, Herron N, Lee PL (1997) Science 275:191

    Article  CAS  Google Scholar 

  15. Agaskar PA, Decaul L, Grasselli RK (1994) Catal Lett 23:339

    Article  CAS  Google Scholar 

  16. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  17. Vanderbilt D (1990) Phys Rev B 41:7892

    Article  Google Scholar 

  18. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188

    Article  Google Scholar 

  19. Henkelman G, Jonsson H (2000) J Chem Phys 113:9978

    Article  CAS  Google Scholar 

  20. Henkelman G, Uberuaga BP, Jonsson H (2000) J Chem Phys 113:9901

    Article  CAS  Google Scholar 

  21. Saito T, Terashima T, Azuma M, Takano M, Goto T, Ohta H, Utsumi W, Bordet P, Johnston DC (2000) J Solid State Chem 153:124

    Article  CAS  Google Scholar 

  22. Geupel S, Pilz K, van Smaalen S, Bullesfeld F, Prokofiev A, Assmus W (2002) Acta Crystallogr C 58:E10

    Article  Google Scholar 

  23. Grimme S (2006) J Comput Chem 27:1787

    Article  CAS  Google Scholar 

  24. Hehre WJ, Ditchfie R, Pople JA (1972) J Chem Phys 56:2257

    Article  CAS  Google Scholar 

  25. Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon MS, Defrees DJ, Pople JA (1982) J Chem Phys 77:3654

    Article  CAS  Google Scholar 

  26. Goddard WA III (1968) Phys Rev 174:659

    Article  CAS  Google Scholar 

  27. Kahn LR, Goddard WA III (1968) Chem Phys Lett 2:667

    Article  CAS  Google Scholar 

  28. Kahn LR, Goddard WA III (1972) J Chem Phys 56:2685

    Article  CAS  Google Scholar 

  29. Melius CF, Goddard WA III (1974) Phys Rev A 10:1528

    Article  CAS  Google Scholar 

  30. Melius CF, Olafson BD, Goddard WA III (1974) Chem Phys Lett 28:457

    Article  CAS  Google Scholar 

  31. Hay PJ, Wadt WR (1985) J Chem Phys 82:299

    Article  CAS  Google Scholar 

  32. Busca G, Centi G, Trifiro F, Lorenzelli V (1986) J Phys Chem 90:1337

    Article  CAS  Google Scholar 

  33. Busca G, Cavani F, Centi G, Trifiro F (1986) J Catal 99:400

    Article  CAS  Google Scholar 

  34. Cheng MJ, Goddard WA III (2013) J Am Chem Soc 135:4600

    Article  CAS  Google Scholar 

  35. Chenoweth K, van Duin ACT, Persson P, Cheng MJ, Oxgaard J, Goddard WA III (2008) J Phys Chem C 112:14645

    Article  CAS  Google Scholar 

  36. Kung HH (1986) Ind Eng Chem Prod Res Dev 25:171

    Article  CAS  Google Scholar 

  37. Joly JP, Mehier C, Bere KE, Abon M (1998) Appl Catal A 169:55

    Article  CAS  Google Scholar 

  38. Wachs IE, Jehng J-M, Deo G, Weckhuysen BM, Guliants VV, Benziger JB (1996) Catal Today 32:47

    Article  CAS  Google Scholar 

  39. Wachs IE, Jehng J-M, Deo G, Weckhuysen BM, Guliants VV, Benziger JB, Sundaresan S (1997) J Catal 170:75

    Article  CAS  Google Scholar 

  40. Volta JC (1996) Catal Today 32:29

    Article  CAS  Google Scholar 

  41. Hutchings GJ, Desmartinchomel A, Olier R, Volta JC (1994) Nature 368:41

    Article  CAS  Google Scholar 

  42. Shimoda T, Okuhara T, Misono M (1985) Bull Chem Soc Jpn 58:21630

    Article  Google Scholar 

  43. Pepera MA, Callahan JL, Desmond MJ, Milberger EC, Blum PR, Bremer NJ (1985) J Am Chem Soc 107:4883

    Article  CAS  Google Scholar 

  44. Kubias B, Rodemerck U, Zanthoff HW, Meisel M (1996) Catal Today 32:243

    Article  CAS  Google Scholar 

  45. Alptekin GO, Herring AM, Williamson DL, Ohno TR, McCormick RL (1999) J Catal 181:104

    Article  CAS  Google Scholar 

  46. Marcu IC, Sandulescu I, Millet JMM (2003) J Mol Catal A 203:241

    Article  CAS  Google Scholar 

  47. Shilov AE, Shul’pin GB (1997) Chem Rev 97:2879

    Article  CAS  Google Scholar 

  48. Dietl N, Engeser M, Schwarz H (2009) Angew Chem Int Ed Engl 48:4861

    Article  CAS  Google Scholar 

  49. de Petris G, Troiani A, Rosi M, Angelini G, Ursini O (2009) Chem Eur J 15:4248

    Article  Google Scholar 

  50. Cheng MJ, Fu R, Goddard WA III (2014) Chem Commun 50(2014):1748

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported mainly by NSF (CHE-1214158) but was initiated with support from the Center for Catalytic Hydrocarbon Functionalization, an Energy Frontier Reserch Center, DOE DE-SC0001298 with some additional support from Chevron USA Inc (Robert Sexton and Oleg Mironov).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William A. Goddard III.

Additional information

This talk is dedicated to Robert Karl Grasselli, who in 1979 introduced me to the wonderful world of mixed metal (amm)oxidation catalysts. He and the excellent group he put together at SOHIO provided the experiments that yielded key mechanistic information that stimulated our theory and computation studies. Bob is an inspiration to us with his deep thinking and encyclopedic knowledge, all aimed at furthering the science of catalysis. His enormous contributions to heterogeneous catalysis have had a dramatic impact on industry and on the chemical concepts underlying selective oxidation catalysis. I want also to thank Jerry Ebner and John Gleaves for their amazing discoveries made at Monsanto back when it was a leading catalysis innovator, and for the deep insights into the mechanism from their TAP reactor studies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, MJ., Goddard, W.A. & Fu, R. The Reduction-Coupled Oxo Activation (ROA) Mechanism Responsible for the Catalytic Selective Activation and Functionalization of n-Butane to Maleic Anhydride by Vanadium Phosphate Oxide. Top Catal 57, 1171–1187 (2014). https://doi.org/10.1007/s11244-014-0284-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-014-0284-6

Keywords

Navigation