Skip to main content
Log in

The Diffusion Coefficient of Ionic Species Through Unsaturated Materials

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

This paper documents the measurement of the chloride diffusion coefficient through partially saturated porous materials. The method was electrochemical impedance spectroscopy, and it was validated by comparison to migration tests in fully saturated samples. A microstructure-based electrical equivalent circuit was developed to obtain the main features of the sample including the material electrical resistance for any water saturation degree. It is shown that the chloride diffusion coefficient varies over four orders of magnitude when the material is almost dry to fully saturated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • AASHTO T 277-93: Standards Specifications for Transportation Materials and Methods of Sampling and Testing, p. 876. 16th edn. AASHTO, Washington, DC (1993)

  • Abreu C.M., Cristobal M.J., Losada R., Novoa X.R., Pena G., Perez M.C.: High frequency impedance spectroscopy of passive films formed on AISI stainless steel in alkaline medium. J. Electroanal. Chem. 572, 335–345 (2004)

    Article  Google Scholar 

  • ASTMC 1202-94: American Society for Testing and Materials, Philadelphia, p. 620 (1994)

  • Atkins P.W.: Physical Chemistry. Oxford University Press, Oxford (1998)

    Google Scholar 

  • Barsoukov E., MacDonald J.R.: Impedance Spectroscopy. 2nd edn. Wiley, Hoboken (2005)

    Book  Google Scholar 

  • Bejan A.: Shape and Structure, from Engineering to Nature. Cambridge University Press, Cambridge UK (2000)

    Google Scholar 

  • Bejan A.: Convection Heat Transfer. 3rd edn. Wiley, Hoboken (2004)

    Google Scholar 

  • Bejan A., Dincer I., Lorente S., Miguel A.F., Reis A.H.: Porous and Complex Flow Structures in Modern Technologies. Springer, New York (2004)

    Google Scholar 

  • Cabeza M., Keddam M., Novoa X.R., Sanchez I., Takenouti H.: Impedance spectroscopy to characterize the pore structure during the hardening process of Portland cement paste. Electrochim. Acta 51, 1831–1841 (2006)

    Article  Google Scholar 

  • Christensen B.J., Coverdale T., Olson R.A., Ford S.J., Garboczi E.J., Jennings H.M., Mason T.O.: Impedance spectroscopy of hydrating cement-based materials: measurement, interpretation, and application. J. Am. Ceram. Soc. 77, 2789–2804 (1994)

    Article  Google Scholar 

  • Climent M.A., de Vera G., Lopez J.F., Viqueira E., Andrade C.: A test method for measuring chloride diffusion coefficients through non-saturated concrete. Part I. The instantaneous plane source diffusion case. Cem. Concr. Res. 32, 1113–1123 (2002)

    Article  Google Scholar 

  • de Vera G., Climent M.A., Viqueira E., Anton C., Andrade C.: A test method for measuring chloride diffusion coefficients through partially saturated concrete. Part II. The instantaneous plane source diffusion case with chloride binding consideration. Cem. Concr. Res. 37, 714–724 (2007)

    Article  Google Scholar 

  • Diaz B., Novoa X.R., Pérez M.C.: Study of the chloride diffusion in mortar: a new method of determining diffusion coefficients based on impedance measurements. Cem. Concr. Compos. 28, 237– 245 (2006)

    Article  Google Scholar 

  • Diaz B., Freire L., Novoa X.R., Puga B., Vivier V.: Resistivity of cementitious materials measured in diaphragm migration cells: the effect of the experimental set-up. Cem. Concr. Res. 40, 1465– 1470 (2010)

    Article  Google Scholar 

  • Francy O., François R.: Modélisation du transfert couplé ions chlore-humidité dans les matériaux cimentaires, Revue Française de Génie Civil. Eur. J. Environ. Civ. Eng. 5, 377–396 (2001)

    Google Scholar 

  • Guimaraes A.T.C., Climent M.A., de Vera G., Vicente F.J., Rodrigues F.T., Andrade C.: Determination of chloride diffusivity through partially saturated Portland cement concrete by a simplified procedure. Constr. Build. Mater. 25, 785–790 (2011)

    Article  Google Scholar 

  • Khitab A., Lorente S., Ollivier J.P.: Predictive model for chloride penetration through concrete. Mag. Concr. Res. 57, 511–520 (2005)

    Article  Google Scholar 

  • Loche J.M., Ammar A., Dumargue P.: Influence of the migration of chloride ions on the electrochemical impedance spectroscopy of mortar paste. Cem. Concr. Res. 35, 1797–1803 (2005)

    Article  Google Scholar 

  • Lorente S.: Constructal view of electrokinetic transfer through porous media. J. Phys. D Appl. Phys. 40, 2941–2947 (2007)

    Article  Google Scholar 

  • Lorente S., Voinitchi D., Bégué-Escaffit P., Bourbon X.: The single-valued diffusion coefficient for ionic diffusion through porous media. J. Appl. Phys. 101, 024907 (2007)

    Article  Google Scholar 

  • Lorente S., Bejan A.: Constructal design of vascular porous materials and electrokinetic mass transfer. Transp. Porous Media 77, 305–322 (2009)

    Article  Google Scholar 

  • Macphee D.E., Sinclair D.R., Cormack S.L.: Development of an equivalent circuit model for cement pastes from microstructural considerations. J. Am. Ceram. Soc. 80, 2876–2884 (1997)

    Article  Google Scholar 

  • Marchand J.: Modeling the behavior of unsaturated cement based systems exposed to aggressive chemical environments. Mater. Struct. 34, 195–200 (2001)

    Article  Google Scholar 

  • Mercado H., Lorente S., Bourbon X.: Chloride diffusion coefficients: a comparison between impedance spectroscopy and electrokinetic tests. Cem. Concr. Compos. 34, 68–75 (2012)

    Article  Google Scholar 

  • Miguel A.F.: Constructal shape formation in stony corals, bacterial colonies and plant roots under different hydrodynamics conditions. J. Theor. Biol. 242, 954–961 (2006)

    Article  Google Scholar 

  • Nelder J., Mead R.: A simplex method for function minimization. Comput. J. 7, 308–313 (1965)

    Article  Google Scholar 

  • Nield D.A., Bejan A.: Convection in Porous Media. 3rd edn. Springer, New York (2006)

    Google Scholar 

  • Olsson D., Nelson L.: The Nelder–Mead simplex procedure for function minimization. Technometrics 17, 45–51 (1975)

    Article  Google Scholar 

  • Orazem M.E., Tribollet B.: Electrochemical Impedance Spectroscopy. Wiley, Hoboken (2008)

    Book  Google Scholar 

  • Sanchez I., Novoa X.R., de Vera G., Climent M.A.: Microstructural modifications in Portland cement concrete due to forced ionic migration tests. Study by impedance spectroscopy. Cem. Concr. Res. 38, 1015–1025 (2008)

    Article  Google Scholar 

  • Sanchez I., Lopez M.P., Ortega J.M., Climent M.A.: Impedance spectroscopy: an efficient tool to determine the non-steady-state chloride diffusion coefficient in building materials. Mater. Corros. 62, 139–145 (2011)

    Article  Google Scholar 

  • Shi M., Chen Z., Sun J.: Determination of chloride diffusivity in concrete by AC impedance spectroscopy. Cem. Concr. Res. 29, 1111–1115 (1999)

    Article  Google Scholar 

  • Snyder K.A., Ferraris C., Martyrs N.S., Garboczi E.J.: Using impedance spectroscopy to assess the viability of the rapid chloride test for determining concrete conductivity. J. Res. NIST 105, 497–509 (2000)

    Google Scholar 

  • Snyder K.A.: The relationship between the formation factor and the diffusion coefficient of porous materials saturated with concentrated electrolytes: theoretical and experimental considerations. Concr. Sci. Eng. 3, 216–224 (2001)

    Google Scholar 

  • Song G.: Equivalent circuit model for AC electrochemical impedance spectroscopy of concrete. Cem. Concr. Res. 30, 1723–1730 (2000)

    Article  Google Scholar 

  • Tang L.P., Nilsson L.O.: Rapid determination of the chloride diffusivity in concrete by applying an electrical field. ACI Mater. J. 89, 49–53 (1992)

    Google Scholar 

  • Vedalakshmi R., Renugha Devi R., Bosco E., Palaniswamy N.: Determination of diffusion coefficient of chloride in concrete: an electrochemical impedance spectroscopic approach. Mater. Struct. 41, 1315–1326 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvie Lorente.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mercado-Mendoza, H., Lorente, S. & Bourbon, X. The Diffusion Coefficient of Ionic Species Through Unsaturated Materials. Transp Porous Med 96, 469–481 (2013). https://doi.org/10.1007/s11242-012-0100-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-012-0100-3

Keywords

Navigation