Skip to main content

Advertisement

Log in

Towards the fulfillment of 5G network requirements: technologies and challenges

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Future 5G networks are expected to have the capabilities of providing extremely high data rates, seamless coverage, massive number of connected devices, low latency, etc., in order to support the internet of things era. The dynamic performance of 5G networks is a key feature for controlling the dense and rapidly changing communication environment. Technical issues such as limited frequency resources, interference, energy consumption, and network management are the main challenges facing 5G networks. This article presents a comprehensive study of 5G networks architecture, technologies, challenges, and possible solutions based on recent advances in technology and research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pierucci, L. (2015). The quality of experience perspective toward 5G technology. IEEE Wireless Communications, 22(4), 10–16.

    Article  Google Scholar 

  2. Liu, Y., Zhang, Y., Yu, R., & Xie, S. (2016). Integrated energy and spectrum harvesting for 5G wireless communications. IEEE Network, 29(3), 75–81.

    Article  Google Scholar 

  3. Liu, Y., She, X., Chen, P., Zhu, J., & Yang, F. (2015). The easy network: the way to go for 5G. China Communications, 12, 113–120.

    Article  Google Scholar 

  4. Palattella, M. R., et al. (2016). Internet of things in the 5G era: enablers, architecture, and business models. IEEE Journal on Selected Areas in Communications, 34(3), 510–527.

    Article  Google Scholar 

  5. Muirhead, D., Imran, M. A., & Arshad, K. (2015). Insights and approaches for low-complexity 5G small-cell base-station design for indoor dense networks. IEEE Access, 3, 1562–1572.

    Article  Google Scholar 

  6. Demestichas, P., Georgakopoulos, A., Tsagkaris, K., & Kotrotsos, S. (2015). Intelligent 5G networks: managing 5G wireless/mobile broadband. IEEE Vehicular Technology Magazine, 10(3), 41–50.

    Article  Google Scholar 

  7. Wei, L., Hu, R. Q., Qian, Y., & Wu, G. (2014). Key elements to enable millimeter wave communications for 5G wireless systems. IEEE Wireless Communications, 21(6), 136–143.

    Article  Google Scholar 

  8. Wang, J., Lv, Z., Ma, Z., Sun, L., & Sheng, Y. (2015). I-net: new network architecture for 5G networks. Communications Magazine, 53(6), 44–51.

    Article  Google Scholar 

  9. Wang, H., Ni, J., Pan, Z., Sun, J., Pan, C., & Chih-Lin, I. (2014). Perspectives on new waveform design for 5G small cell. In General Assembly and Scientific Symposium (URSI GASS) (pp. 1–4).

  10. Wang, N., Hossain, E., & Bhargava, V. K. (2015). Backhauling 5G small cells: a radio resource management perspective. IEEE Wireless Communications, 22(5), 41–49.

    Article  Google Scholar 

  11. Kela, P., Turkka, J., & Costa, M. (2015). Borderless mobility in 5G outdoor ultra-dense networks. IEEE Access, 3, 1462–1476.

    Article  Google Scholar 

  12. Gupta, A., & Jha, R. K. (2015). A survey of 5G network: architecture and emerging technologies. IEEE Access, 3, 1206–1232.

    Article  Google Scholar 

  13. Jungnickel, V., et al. (2014). The role of small cells, coordinated multipoint, and massive MIMO in 5G. IEEE Communications Magazine, 52(5), 44–51.

    Article  Google Scholar 

  14. Galinina, O., Pyattaev, A., Andreev, S., Dohler, M., & Koucheryavy, Y. (2015). 5G multi-RAT LTE-WiFi ultra-dense small cells: performance dynamics, architecture, and trends. IEEE Journal on Selected Areas in Communications, 33(6), 1224–1240.

    Article  Google Scholar 

  15. Zhang, H., Jiang, C., Beaulieu, N. C., Chu, X., Wen, X., & Tao, M. (2014). Resource allocation in spectrum-sharing OFDMA femtocells with heterogeneous services. IEEE Transactions on Communications, 62(7), 2366–2377.

    Article  Google Scholar 

  16. Hossain, E., & Hasan, M. (2015). 5G cellular: key enabling technologies and research challenges. IEEE Instrumentation and Measurement Magazine, 18(5), 11–21.

    Article  Google Scholar 

  17. Wang, W., & Zhang, Q. (2014). Local cooperation architecture for self-healing femtocell networks. IEEE Wireless Communications, 21(2), 42–49.

    Article  Google Scholar 

  18. Chuang, M.-C., Chen, M. C., & Sun, Y. S. (2015). Resource management issues in 5G ultra dense smallcell networks. In International Conference on Information networking (ICOIN) (pp. 159–1640).

  19. Ge, X., Tu, S., Mao, G., Wang, C. X., & Han, T. (2016). The 5G ultra dense cellular networks. Wireless Communications, 23(1), 72–79.

    Article  Google Scholar 

  20. Liu, C., Wang, J., Cheng, L., Zhu, M., & Chang, G. K. (2014). Key microwave-photonics technologies for next-generation cloud-based radio access networks. Journal of Lightwave Technology, 32(20), 3452–3460.

    Article  Google Scholar 

  21. Zhang, H., Chu, X., Guo, W., & Wang, S. (2015). Coexistence of Wi-Fi and heterogeneous small cell networks sharing unlicensed spectrum. IEEE Communications Magazine, 53(3), 158–164.

    Article  Google Scholar 

  22. Zhang, H., Jiang, C., Mao, X., & Chen, H. (2016). Interference-limited resource optimization in cognitive femtocells with fairness and imperfect spectrum sensing. IEEE Transactions on Vehicular Technology, 65(3), 1761–1771.

    Article  Google Scholar 

  23. Peng, H., Xiao, Y., Ruyue, Y. N., & Yifei, Y. (2016). Ultra dense network: challenges, enabling technologies and new trends. China Communications, 13(2), 30–40.

    Google Scholar 

  24. Yasuda, H. et al. (2015). A study on moving cell in 5G cellular system. In IEEE Conference on Vehicular Technology (VTC) (pp. 1–5).

  25. Kliks, A., Holland, O., Basaure, A., & Matinmikko, M. (2015). Spectrum and license flexibility for 5G networks. IEEE Communications Magazine, 53(7), 42–49.

    Article  Google Scholar 

  26. Usman, M., Gebremariam, A. A., Raza, U., & Granelli, F. (2015). A software-defined device-to-device communication architecture for public safety applications in 5G networks. IEEE Access, 3, 1649–1654.

    Article  Google Scholar 

  27. Cheng, W., Zhang, X., & Zhang, H. (2014). Optimal power allocation for full-duplex D2D communications over wireless cellular networks. In IEEE Global Communications Conference (GLOBECOM) (pp. 4764–4769).

  28. Wang, L., Tian, F., Svensson, T., Feng, D., Song, M., & Li, S. (2015). Exploiting full duplex for device-to-device communications in heterogeneous networks. IEEE Communications Magazine, 53(5), 146–152.

    Article  Google Scholar 

  29. Wu, G., Yang, C., Li, S., & Li, G. Y. (2015). Recent advances in energy efficient networks and their application in 5G systems. IEEE Wireless Communications, 22(2), 145–151.

    Article  Google Scholar 

  30. Mumtaz, S., Huq, K. M. S., Ashraf, M. I., Rodriguez, J., Monteiro, V., & Politis, C. (2015). Cognitive vehicular communication for 5G. IEEE Communications Magazine, 53(7), 109–117.

    Article  Google Scholar 

  31. Pervaiz, H., Musavian, L., & Ni, Q. (2015). The area energy and area spectrum efficiency trade-off in 5G heterogeneous networks. In IEEE International Conference on Communication Workshop (ICCW) (pp. 1178–1183).

  32. Yang, F., Wang, H., Mei, C., Zhang, J., & Wang, M. (2015). A flexible three clouds 5G mobile network architecture based on NFV and SDN. China Communications, 12, 121–131.

    Article  Google Scholar 

  33. Condoluci, M., Dohler, M., Araniti, G., Molinaro, A., & Zheng, K. (2015). Toward 5G denseNets: architectural advances for effective machine-type communications over femtocells. IEEE Communications Magazine, 53(1), 134–141.

    Article  Google Scholar 

  34. Shariatmadari, H., et al. (2015). Machine-type communications: current status and future perspectives toward 5G systems. IEEE Communications Magazine, 53(9), 10–17.

    Article  Google Scholar 

  35. Zhang, X., Cheng, W., & Zhang, H. (2014). Heterogeneous statistical QoS provisioning over 5G mobile wireless networks. IEEE Network, 28(6), 46–53.

    Article  Google Scholar 

  36. Goyal, S., Liu, P., Panwar, S. S., Difazio, R. A., Yang, R., & Bala, E. (2015). Full duplex cellular systems: will doubling interference prevent doubling capacity? IEEE Communications Magazine, 53(5), 121–127.

    Article  Google Scholar 

  37. Xie, X., & Zhang, X. (2014). Does full-duplex double the capacity of wireless networks? In IEEE INFOCOM (pp. 253–261).

  38. Zhang, Z., Chai, X., Long, K., Vasilakos, A. V., & Hanzo, L. (2015). Full duplex techniques for 5G networks: self-interference cancellation, protocol design, and relay selection. IEEE Communications Magazine, 53(5), 128–137.

    Article  Google Scholar 

  39. Catania, D., Sarret, M. G., Cattoni, A. F., Frederiksen, F., Berardinelli, G., & Mogensen, P. (2014). The Potential of Flexible UL/DL Slot Assignment in 5G Systems. In IEEE Vehicular Technology Conference (pp. 1–6).

  40. Han, C. L. I. S., Xu, Z., Wang, S., Sun, Q., & Chen, Y. (2016). New paradigm of 5G wireless internet. IEEE Journal on Selected Areas in Communications, 34(3), 474–482.

    Article  Google Scholar 

  41. Qiao, J., Shen, X. S., Mark, J. W., Shen, Q., He, Y., & Lei, L. (2015). Enabling device-to-device communications in millimeter-wave 5G cellular networks. IEEE Communications Magazine, 53(1), 209–215.

    Article  Google Scholar 

  42. Huq, K. M. S., Mumtaz, S., Bachmatiuk, J., Rodriguez, J., Wang, X., & Aguiar, R. L. (2014). Green HetNet CoMP: energy efficiency analysis and optimization. IEEE Transaction on Vehicular Technology, 64(10), 4670–4683.

    Article  Google Scholar 

  43. Mustafa, H. A. U., Imran, M. A., Shakir, M. Z., Imran, A., & Tafazolli, R. (2015). Separation framework: an enabler for cooperative and D2D communication for future 5G networks. IEEE Communications Surveys and Tutorials, 18(1), 419–445.

    Article  Google Scholar 

  44. Zhang, H., Jiang, C., Cheng, J., & Leung, V. C. M. (2015). Cooperative interference mitigation and handover management for heterogeneous cloud small cell networks. IEEE Wireless Communications, 22(3), 92–99.

    Article  Google Scholar 

  45. Zhang, H., Jiang, C., Hu, R. Q., & Qian, Y. (2016). Self-organization in disaster-resilient heterogeneous small cell networks. IEEE Network, 30(2), 116–121.

    Article  Google Scholar 

  46. Han, Q., Liang, S., & Zhang, H. (2015). Mobile cloud sensing, big data, and 5G networks make an intelligent and smart world. IEEE Network, 29(2), 40–45.

    Article  Google Scholar 

  47. Zhang, N., Cheng, N., Gamage, A. T., Zhang, K., Mark, J. W., & Shen, X. (2015). Cloud assisted HetNets toward 5G wireless networks. IEEE Communications Magazine, 53(6), 59–65.

    Article  Google Scholar 

  48. Liu, X., Wang, P., Lan, Z., & Shao, B. (2015). Biological characteristic online identification technique over 5G network. IEEE Wireless Communications, 22(6), 84–90.

    Article  Google Scholar 

  49. Jiang, C., Zhang, H., Ren, Y., & Chen, H. (2014). Energy-efficient non-cooperative cognitive radio networks: micro, meso, and macro views. IEEE Communications Magazine, 52(7), 14–20.

    Article  Google Scholar 

  50. Rost, P., et al. (2015). Benefits and challenges of virtualization in 5G radio access networks. IEEE Communications Magazine, 53(12), 75–82.

    Article  Google Scholar 

  51. Sezer, S., et al. (2013). Are we ready for SDN? Implementation challenges for software-defined networks. IEEE Communications Magazine, 51(7), 36–43.

    Article  Google Scholar 

  52. Feng, Z., Qiu, C., Feng, Z., Wei, Z., Li, W., & Zhang, P. (2015). An effective approach to 5G: wireless network virtualization. IEEE Communications Magazine, 53(12), 53–59.

    Article  Google Scholar 

  53. Wang, H., Chen, S., Xu, H., Ai, M., & Shi, Y. (2015). SoftNet: a software defined decentralized mobile network architecture toward 5G. IEEE Network, 29(2), 16–22.

    Article  Google Scholar 

  54. Bogucka, H., Kryszkiewicz, P., & Kliks, A. (2015). Dynamic spectrum aggregation for future 5G communications. IEEE Communications Magazine, 53(5), 35–43.

    Article  Google Scholar 

  55. Zappone, A., Sanguinetti, L., Bacci, G., Jorswieck, E., & Debbah, M. (2015). Energy-efficient power control: a look at 5G wireless technologies. IEEE Transactions on Signal Processing, 64(7), 1668–1683.

    Article  Google Scholar 

  56. Tran, G.K., Shimodaira, H., Rezagah, R. E., Sakaguchi, K., & Araki, K. (2015). Dynamic cell activation and user association for green 5G heterogeneous cellular networks. In IEEE International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC) (pp. 2364–2368).

  57. Han, N. D., Chung, Y., & Jo, M. (2015). Green data centers for cloud-assisted mobile Ad Hoc networks in 5G. IEEE Network, 29(2), 70–76.

    Article  Google Scholar 

  58. Liu, G., Yu, F. R., Ji, H., & Leung, V. C. M. (2014). The energy-efficient resource allocation in cellular networks with shared full-duplex relaying. IEEE Transactions on Vehicular Technology, 64(8), 3711–3724.

    Article  Google Scholar 

  59. Jing, W., Lu, Z., Zhang, H., Zhang, Z., Zhao, J., & Wen, X. (2014). Energy-Saving Resource Allocation Scheme With QoS Provisioning in OFDMA Femtocell Networks. In IEEE International Conference on Communications Workshops (ICC) (pp. 912–917).

  60. Oliva, A. D. L., et al. (2015). Xhaul: toward an integrated fronthaul/backhaul architecture in 5G networks. IEEE Wireless Communications, 22(5), 32–40.

    Article  Google Scholar 

  61. Geraci, G., Wildemeersch, M., & Quek, T. Q. S. (2015). Distributed network management for green wireless communications. In IEEE Global Communications Conference (GLOBECOM) (pp. 1–7).

  62. Barco, R., Lazaro, P., & Munoz, P. (2012). A unified framework for self-healing in wireless networks. IEEE Communications Magazine, 50(12), 134–142.

    Article  Google Scholar 

  63. Zheng, W., Zhang, H., Chu, X., & Wen, X. (2013). Mobility robustness optimization in self-organizing LTE femtocell networks. EURASIP Journal on Wireless Communications and Networking, 1, 1–10.

    Google Scholar 

  64. Imran, A., Zoha, A., & Abu-Dayya, A. (2014). Challenges in 5G: how to empower SON with big data for enabling 5G. IEEE Network, 28(6), 27–33.

    Article  Google Scholar 

  65. Duan, D., Yang, L., Cao, Y., Wei, J., & Cheng, X. (2014). Self-organizing networks: from bio-inspired to social-driven. IEEE Intelligent Systems, 29(2), 86–90.

    Article  Google Scholar 

  66. Nam, C., Joo, C., & Bahk, S. (2015). Joint subcarrier assignment and power allocation in full-duplex OFDMA networks. IEEE Transactions on Wireless Communications, 14(6), 3108–3119.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alagan Anpalagan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alnoman, A., Anpalagan, A. Towards the fulfillment of 5G network requirements: technologies and challenges. Telecommun Syst 65, 101–116 (2017). https://doi.org/10.1007/s11235-016-0216-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-016-0216-9

Keywords

Navigation