Skip to main content
Log in

A support vector regression approach to detection in large-MIMO systems

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

We propose a support vector regression approach for symbol detection in large-MIMO systems employing spatial multiplexing. We explore the applicability of machine learning algorithms, in particular support vector machines, to address one of the recent research problem in communications.The machine learning capability is exploited to achieve fast detection in large dimension systems. The performance of the proposed method is compared with lattice reduction aided detection which is currently the popular choice and the improvement in terms of bit error rate is demonstrated. The sparse formulation of the problem matrix reduces the computational complexity and enables faster detection. The proposed detection algorithm is tailored to address both uncorrelated and correlated channel conditions as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Fredrik Rusek, D., Persson, B. K., Lau, E. G. Larsson, Marzetta, Thomas L., Ove, Edfors, & Tufvesson, Fredrik. (2013). Scaling Up MIMO: opportunities and challenges with very large arrays. IEEE Signal Processing Magazine, 30(1), 40–60.

    Article  Google Scholar 

  2. Tanumay Datta, N., Srinidhi, A. Chockalingam, & Sundar Rajan, B. (2010). Random-restart reactive tabu search algorithm for detection in large-MIMO systems. IEEE Communications Letters, 14(12), 1107–1109.

    Article  Google Scholar 

  3. Ramanathan, R., & Jayakumar, M. (2015). A performance study of semidefinite relaxation detector in spatially correlated and rank deficient large MIMO systems. Wireless Personal Communications, 83(4), 2883–2897.

    Article  Google Scholar 

  4. Zhou, Q., & Ma, X. (2013). Element-based lattice reduction algorithms for large MIMO detection. IEEE Journal of Selected Areas in Communications, 31(2), 274–286.

    Article  Google Scholar 

  5. Ramanathan, R., & Jayakumar, M. (2015). A novel cuckoo search approach to detection in spatially correlated MIMO channels. International Journal of Mathematical Modeling and Numerical Optimization, 6(2), 101–113.

    Article  Google Scholar 

  6. Wubben, D., Seethaler, D., Jaldén, J., & Matz, G. (2011). Lattice reduction: a survey with applications in wireless communications. IEEE Signal Processing Magazine, 28(3), 70–91.

    Article  Google Scholar 

  7. Bai, L., Chen, C., & Choi, J. (2010). Error-probability-based column reordering criterion for lattice-reduction-based list MIMO detection. Electronics Letters, 46(12), 868–869.

    Article  Google Scholar 

  8. Bai, L., Chen, C., & Choi, J. (2012). Partial MAP-based lattice reduction-aided list MIMO detection. Electronics Letters, 48(10), 598–600.

    Article  Google Scholar 

  9. Shao, Z. Y., Cheung, S. W., & Yuk, T. I. (2014). Lattice-reduction-aided semidefinite relaxation detection algorithms for multiple-input multiple-output systems. IET Communications, 8(4), 448–454.

    Article  Google Scholar 

  10. Luo, Z. Q., Ma, W. K., So, A. M., Ye, Y., & Zhang, S. (2010). Semidefinite relaxation of quadratic optimization problems. IEEE Signal Processing Magazine, 27(3), 20–34.

    Article  Google Scholar 

  11. Aly, S. (2014). Partially occluded pedestrian classification using histogram of oriented gradients and local weighted linear kernel support vector machine. IET Computer Vision, 8(6), 620–628.

    Article  Google Scholar 

  12. Benkedjouh, T., Medjaher, K., Zerhouni, N., & Rechak, S. (2013). Remaining useful life estimation based on nonlinear feature reduction and support vector regression. Engineering Applications of Artificial Intelligence, 26(7), 1751–1760.

    Article  Google Scholar 

  13. Gryllias, K. C., & Antoniadis, I. A. (2012). A support vector machine approach based on physical model training for rolling element bearing fault detection in industrial environments. Engineering Applications of Artificial Intelligence, 25(2), 326–344.

    Article  Google Scholar 

  14. Han, L., Han, L., & Zhao, H. (2013). Orthogonal support vector machine for credit scoring. Engineering Applications of Artificial Intelligence, 26(2), 848–862.

    Article  Google Scholar 

  15. Yang, H. Y., Wang, X. Y., Zhang, Y., & Miao, E. N. (2013). Robust digital watermarking in PDTDFB domain based on least squares support vector machine. Engineering Applications of Artificial Intelligence, 26(9), 2058–2072.

    Article  Google Scholar 

  16. Decherchi, S., Gastaldo, P., Parodi, M., & Zunino, R. (2008). Low-complexity, linear circuit implementation of support vector machines training. Electronics Letters, 44(25), 1478–1479.

    Article  Google Scholar 

  17. Liao, R. J., Zheng, H. B., Grzybowski, S., Yang, L. J., Tang, C., & Zhang, Y. Y. (2011). Fuzzy information granulated particle swarm optimisation-support vector machine regression for the trend forecasting of dissolved gases in oil-filled transformers. IET Electric Power Applications, 5(2), 230–237.

    Article  Google Scholar 

  18. Zhou, H., Zhao, J. P., Zheng, L. G., & Cen, K. F. (2012) Modeling NOx emissions from coal-fired utility boilers using support vector regression with ant colony optimization. Engineering Applications of Artificial Intelligence, 25(1), 147–158.

  19. Santamaría, I. (2003). Design of linear-phase FIR filters using support vector regression approach. Electronics Letters, 39(19), 1422–1423.

    Article  Google Scholar 

  20. Cheng, H., Tian, J. W., Liu, J., & Yu, Q. Z. (2004). Wavelet domain image denoising via support vector regression. Electronics Letters, 40(23), 1479–1481.

    Article  Google Scholar 

  21. Song, P., Bao, Y. Q., Zhao, L., & Zou, C. R. (2011). Voice conversion using support vector regression. Electronics Letters, 47(18), 1045–1046.

  22. Naeem, M., & Lee, D. C. (2011). Low-complexity joint transmit and receive antenna selection for MIMO systems. Engineering Applications of Artificial Intelligence, 24(6), 1046–1051.

    Article  Google Scholar 

  23. Wu, C., Yu, Q., & Yi, K. (2012). Least-squares support vector machine-based learning and decision making in cognitive radios. IET Communications, 6(17), 2855–2863.

    Article  Google Scholar 

  24. Gao, Z., Dai, L., & Wang, Z. (2014). Structured compressive sensing based superimposed pilot design in downlink large-scale MIMO systems. Electronics Letters, 50(12), 896–898.

    Article  Google Scholar 

  25. Wang, M., Cheng, X., & Zhu, X. (2015). Matching pursuit-based singular vectors estimation for large MIMO beamforming. Electronics Letters, 51(2), 56–57.

    Article  Google Scholar 

  26. Choi, J. (2005). Iterative receivers with bit-level cancellation and detection for MIMO-BICM systems. IEEE Transactions on Signal Processing, 53(12), 4568–4577.

    Article  Google Scholar 

  27. Gesbert, D., Bölcskei, H., Gore, D. A., & Paulraj, A. J. (2002). Outdoor MIMO wireless channels : models and performance predictio. IEEE Transactions on Communication, 50(12), 1926–1934.

    Article  Google Scholar 

  28. Bennett, K. P., Momma, M., & Embrechts, M. J. (2002). MARK: A boosting algorithm for heterogeneous kernel models. In Proceedings of the eighth ACM SIGKDD international conference on knowledge discovery and data mining series, KDD ’02 (pp. 24–31). doi:10.1145/775047.775051.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ramanathan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramanathan, R., Jayakumar, M. A support vector regression approach to detection in large-MIMO systems. Telecommun Syst 64, 709–717 (2017). https://doi.org/10.1007/s11235-016-0202-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-016-0202-2

Keywords

Navigation