Skip to main content
Log in

Extreme bosonic linear channels

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

The set of all channels with a fixed input and output is convex. We first give a convenient formulation of the necessary and sufficient condition for a channel to be an extreme point of this set in terms of the complementary channel, a notion of great importance in quantum information theory. This formulation is based on the general approach to extremality of completely positive maps in an operator algebra in the spirit of Arveson. We then use this formulation to prove our main result: under certain nondegeneracy conditions, environmental purity is necessary and sufficient for the extremality of a bosonic linear (quasifree) channel. It hence follows that a Gaussian channel between finite-mode bosonic systems is extreme if and only if it has minimum noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Weedbrook, S. Pirandola, R. Garcia-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, Rev. Modern Phys., 84, 621–669 (2012); arXiv:1110.3234v1 [quant-ph] (2011).

    Article  ADS  Google Scholar 

  2. A. S. Holevo, Quantum Systems, Channels, Information [in Russian], MTsNMO, Moscow (2010).

    Google Scholar 

  3. I. Devetak and P. W. Shor, “The capacity of a quantum channel for simultaneous transmission of classical and quantum information,” arXiv:quant-ph/0311131v3 (2003).

    Google Scholar 

  4. A. S. Holevo, Theory Probab. Appl., 51, 92–100 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  5. C. King, K. Matsumoto, M. Natanson, and M. B. Ruskai, Markov Process. Related Fields, 13, 391–423 (2007).

    MathSciNet  MATH  Google Scholar 

  6. W. B. Arveson, Acta Math., 123, 141–224 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  7. J. S. Ivan, K. Sabapathy, and R. Simon, Phys. Rev. A, 84, 042311 (2011); arXiv:1012.4266v1 [quant-ph] (2010).

    Article  ADS  Google Scholar 

  8. M.-D. Choi, Linear Algebra Appl., 10, 285–290 (1975).

    Article  MATH  Google Scholar 

  9. S.-K. Tsui, Proc. Amer. Math. Soc., 124, 437–445 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  10. A. S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory [in Russian], IKI, Moscow (2004).

    Google Scholar 

  11. B. Demoen, P. Vanheuverzwijn, and A. Verbeure, Rep. Math. Phys., 15, 27–39 (1979).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. F. Caruso, V. Giovannetti, and A. S. Holevo, New J. Phys., 8, 310 (2006).

    Article  ADS  Google Scholar 

  13. R. Simon, M. Selvadoray, and G. S. Agarwal, “Gaussian states for finite number of bosonic degrees of freedom,” Unpublished draft (1998).

    Google Scholar 

  14. A. S. Holevo, Problems Inform. Transmission, 8, No. 1, 47–54 (1972).

    MathSciNet  Google Scholar 

  15. A. S. Holevo and R. F. Werner, Phys. Rev. A, 63, 032312 (2001).

    Article  ADS  Google Scholar 

  16. G. Lindblad, J. Phys. A, 33, 5059–5076 (2000).

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Holevo.

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 174, No. 2, pp. 331–341, February, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holevo, A.S. Extreme bosonic linear channels. Theor Math Phys 174, 288–297 (2013). https://doi.org/10.1007/s11232-013-0026-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-013-0026-0

Keywords

Navigation