Skip to main content
Log in

Unscented transformation with scaled symmetric sampling strategy for precision estimation of total least squares

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

The errors-in-variables (EIV) model is a nonlinear model, the parameters of which can be solved by singular value decomposition (SVD) method or the general iterative algorithm. The existing formulae for covariance matrix of total least squares (TLS) parameter estimates don’t fully consider the randomness of quantities in iterative algorithm and the biases of parameter estimates and residuals. In order to reflect more reasonable precision information for TLS adjustment, the derivative-free unscented transformation with scaled symmetric sampling strategy, i.e. scaled unscented transformation (SUT), is introduced and implemented. In this contribution, we firstly discuss the existing various solutions of TLS adjustment and covariance matrices of TLS parameter estimates and derive the general first-order approximate cofactor matrices of random quantities in TLS adjustment. Secondly, based on the combination of TLS iterative algorithm and calculation process of SUT, we design the two SUT algorithms to calculate the biases and the second-order approximate covariance matrices. Finally, the straight line fitting model and plane coordinate transformation model are used to demonstrate that applying SUT for precision estimation of TLS adjustment is feasible and effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amiri-Simkooei A.R., 2009. Noise in multivariate GPS position time series. J. Geodesy, 83, 175–187.

    Article  Google Scholar 

  • Amiri-Simkooei A.R., 2013. Application of least squares variance component estimation to errorsin-variables models. J. Geodesy, 87, 935–944.

    Article  Google Scholar 

  • Amiri-Simkooei A.R., 2016. Non-negative least-squares variance component estimation with application to GPS time series. J. Geodesy, 90, 451–466.

    Article  Google Scholar 

  • Amiri-Simkooei A. and Jazaeri S., 2012. Weighted total least squares formulated by standard least squares theory. J. Geod. Sci., 2, 113–124.

    Google Scholar 

  • Amiri-Simkooei A.R., Zangeneh-Nejad F. and Asgari J., 2016. On the covariance matrix of weighted total least-squares estimates. J. Surv. Eng., 04015013.

    Google Scholar 

  • Box M.J., 1971. Bias in nonlinear estimation (with discussions). J. R. Stat. Soc., B33, 171–201.

    Google Scholar 

  • Fang X., 2011. Weighted Total Least Squares Solution for Application in Geodesy. PhD Thesis. Leibniz University, Hannover, Germany.

    Google Scholar 

  • Fang X., 2015. Weighted total least-squares with constraints: a universal formula for geodetic symmetrical transformations. J. Geodesy, 89, 459–469.

    Article  Google Scholar 

  • Gerhold G.A., 1969. Least-squares adjustment of weighted data to a general linear equation. Am. J. Phys., 37, 156–161.

    Article  Google Scholar 

  • Golub G. and van Loan C., 1980. An analysis of the total least-squares problem. SIAM J. Numer. Anal., 17, 883–893.

    Article  Google Scholar 

  • Gustafsson F. and Hendeby G., 2012. Some relations between extended and unscented Kalman filters. IEEE Trans. Signal Process., 60, 545–555.

    Article  Google Scholar 

  • Jazaeri S., Amiri-Simkooei A.R. and Sharifi M.A., 2014. An iterative algorithm for weighted total least-squares adjustment. Surv. Rev., 46, 16–27.

    Google Scholar 

  • Julier S.J., Uhlmann J.K. and Durrant-Whyte H.F., 1995. A new approach for filtering nonlinear systems. In: Proceedings of the American Control Conference 3, IEEE, New York, DOI: 10.1109/ACC.1995.529783.

    Google Scholar 

  • Koch K.R., 1999. Parameter Estimation and Hypothesis Testing in Linear Models. Springer-Verlag, Berlin, Germany.

    Book  Google Scholar 

  • Magnus J.R. and Neudecker H., 2007. Matrix Differential Calculus with Applications in Statistics and Econometrics. 3rd Edition. Wiley, New York.

    Google Scholar 

  • Mahboub V., 2012. On weighted total least-squares for geodetic transformation. J. Geodesy, 86, 359–367.

    Article  Google Scholar 

  • Mahboub V., Ardalan A.A. and Ebrahimzadeh S., 2015. Adjustment of non-typical errors-invariables models. Acta Geod. Geophys., 50, 207–218.

    Article  Google Scholar 

  • Markovsky I. and van Huffel S., 2007. Overview of total least squares methods. Signal Process., 87, 2283–2302.

    Article  Google Scholar 

  • Neitzel F., 2010. Generalization of total least-squares on example of unweighted and weighted 2D similarity transformation. J. Geodesy, 84, 751–762.

    Article  Google Scholar 

  • Neitzel F. and Petrovic S., 2008. Total Least-Squares (TLS) im Kontext der Ausgleichung nach kleinsten Quadraten am Beispel der ausgleichenden Geraden. Z. Vermessungswesen, 133, 141–148 (in German).

    Google Scholar 

  • Neitzel F. and Schaffrin B., 2016. On the Gauss-Helmert model with a singular dispersion matrix where BQ is of smaller rank than B. J. Comput. Appl. Math., 291, 458–467.

    Article  Google Scholar 

  • Ratwosky D., 1983. Nonlinear Regression Modeling: a Unified Practical Approach. Marcel Dekker, New York.

    Google Scholar 

  • Schaffrin B., 2006. A note on constrained total least-squares estimation. Linear Alg. Appl., 417, 245–258.

    Article  Google Scholar 

  • Schaffrin B., 2016. Adjusting the errors-in-variables model: linearized least-squares vs. nonlinear total least-squares. In: Sneeuw N., Novák P., Crespi M. and Sansò F. (Eds), VIII Hotine-Marussi Symposium on Mathematical Geodesy. International Association of Geodesy Symposia, 142. Springer-Verlag, Heidelberg, Germany, 301–307.

    Google Scholar 

  • Schaffrin B. and Snow K., 2010. Total least-squares regularization of Tykhonov type and an ancient racetrack in Corinth. Linear Alg. Appl., 432, 2061–2076.

    Article  Google Scholar 

  • Schaffrin B. and Wieser A., 2008. On weighted total least-squares adjustment for linear regression. J. Geodesy, 82, 415–421.

    Article  Google Scholar 

  • Schaffrin B., Snow K. and Neitzel F., 2014. On the errors-in-variables model with singular dispersion matrices. J. Geod. Sci., 4, 28–36.

    Google Scholar 

  • Shen Y.Z., Li B.F. and Chen Y., 2011. An iterative solution of weighted total least-squares adjustment. J. Geodesy, 85, 229–238.

    Article  Google Scholar 

  • Teunissen P.J.G., 1984. A note on the use of Gauss’ formulas in non-linear geodetic adjustment. Stat. Descis., 2, 455–466.

    Google Scholar 

  • Teunissen P.J.G., 1985. The Geometry of Geodetic Inverse Linear Mapping and Nonlinear Adjustment. Publications on Geodesy, New Series, 8(1). Netherlands Geodetic Commission, Delft, The Netherlands, 186 pp.

    Google Scholar 

  • Teunissen P.J.G., 1988. The nonlinear 2D symmetric Helmert transformation: an exact nonlinear least-squares solution. J. Geodesy, 62, 1–15.

    Google Scholar 

  • Teunissen P.J.G., 1989. First and second order moments of nonlinear least-squares estimators. J. Geodesy, 63, 253–262.

    Google Scholar 

  • Teunissen P.J.G., 1990. Nonlinear least-squares. Manus. Geod., 15, 137–150.

    Google Scholar 

  • Teunissen P.J.G. and Amiri-Simkooei A.R., 2008. Least-squares variance component estimation. J. Geodesy, 82, 65–82.

    Article  Google Scholar 

  • Teunissen P.J.G. and Knickmeyer E.H., 1988. Nonlinearity and least squares. CIAM J. ACSGC, 42, 321–330.

    Google Scholar 

  • Tong X.H., Jin Y.M., Zhang S.L., Li L.Y. and Liu S.J., 2014. Bias-corrected weighted total leastsquares adjustment of condition equations. J. Surv. Eng., 04014013.

    Google Scholar 

  • van Huffel S. and Vandewalle J., 1991. The Total Least Squares Problem: Computational Aspects and Analysis. SIAM, Philadelphia, PA.

    Book  Google Scholar 

  • Wan E.A. and van der Merwe R., 2001. The unscented kalman filter. In: Haykin S. (Ed.), Kalman Filtering and Neural Networks. Wiley, New York, 221–280.

    Chapter  Google Scholar 

  • Wang L.Y., 2012. Research on theory and application of total least squares in geodetic inversion. Acta Geodaetica et Cartographica Sinica, 41, 629 (in Chinese).

    Google Scholar 

  • Wang L.Y. and Xu C.J., 2013. Progress in total least squares. Geomat. Inf. Sci. Wuhan Univ., 38, 850–856 (in Chinese with English Abstract).

    Google Scholar 

  • Wang L.Y. and Xu G.Y., 2016. Variance component estimation for partial errors-in-variables models. Stud. Geophys. Geod., 60, 35–55.

    Article  Google Scholar 

  • Wang L.Y., Yu H. and Chen X.Y., 2016. An algorithm for partial EIV model. Acta Geodaetica et Cartographica Sinica, 45, 22–29 (in Chinese with English Abstract).

    Google Scholar 

  • Wells D. and Krakiwsky E.J., 1971. The Method of Least Squares. Department of Geodesy and Geomatics Engineering, University of New Brunswick, Fredericton, N.B., Canada (http://www2.unb.ca/gge/Pubs/LN18.pdf).

    Google Scholar 

  • Xu C.J., Wang L.Y., Wen Y.M. and Wang J.J., 2011. Strain rates in the Sichuan-Yunnan region based upon the total least squares heterogeneous strain model from GPS data. Terr. Atmos. Ocean Sci., 22, 133–147.

    Article  Google Scholar 

  • Xu P.L. and Liu J.N., 2014. Variance components in errors-in-variables models: estimability, stability and bias analysis. J. Geodesy, 88, 719–734.

    Article  Google Scholar 

  • Xu P.L., Liu J.N. and Shi C., 2012. Total least squares adjustment in partial errors-in-variables models: algorithm and statistical analysis. J. Geodesy, 86, 661–675.

    Article  Google Scholar 

  • Yao Y.B. and Kong J., 2014. A new combined LS method considering random errors of design matrix. Geomat. Inf. Sci. Wuhan Univ., 39, 1028–1032 (in Chinese with English Abstract).

    Google Scholar 

  • York D., Evensen N.M., Martınez M.L. and Delgado J.D.B., 2004. Unified equations for the slope, intercept, and standard errors of the best straight line. Am. J. Phys., 72, 367–375.

    Article  Google Scholar 

  • Zeng W.X., Liu J.N. and Yao Y.B., 2014. On partial errors-in-variables models with inequality constraints of parameters and variables. J. Geodesy, 89, 111–119.

    Article  Google Scholar 

  • Zhou Y.J. and Fang X., 2016. A mixed weighted least squares and weighted total least squares adjustment method and its geodetic applications. Surv. Rev., 351, DOI: 10.1179/1752270615Y.0000000040.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leyang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhao, Y. Unscented transformation with scaled symmetric sampling strategy for precision estimation of total least squares. Stud Geophys Geod 61, 385–411 (2017). https://doi.org/10.1007/s11200-016-1113-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-016-1113-0

Keywords

Navigation