Skip to main content
Log in

Estimation of chlorophyll content and daily primary production of the major algal groups by means of multiwavelength-excitation PAM chlorophyll fluorometry: performance and methodological limits

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The performance and methodological limits of the Phyto-PAM chlorophyll fluorometer were investigated with laboratory grown algae cultures and natural phytoplankton from the rivers Saar and Saale. The Phyto-PAM is a 4-wavelength chlorophyll fluorometer with the functional combination of chlorophyll (Chl) estimation and assessment of photosynthetic activity, both differentiated into the main algal groups. The reliability of fluorescence-based Chl estimation strongly depends on the group specific calibration of the instrument and the resulting chlorophyll/fluorescence (Chl/F) ratios in reference algal cultures. A very high reliability of the Chl estimation was obtained in the case of constant Chl/F-ratios. Algae grown at different light intensities showed marked differences in Chl/F-ratios, reflecting differences in pigment composition and Chl a specific absorption (a*). When the Phyto-PAM was calibrated with laboratory grown diatoms, the Chl a in river grown diatoms was underestimated, due a lower content of accessory pigments and stronger pigment packaging. While this aspect presently limits the application of PAM fluorometry in limnology, this limitation may be overcome by future technical progress in the detection of dynamic changes in Chl/F-ratio via fluorescence-based measurements of the functional PS II absorption cross-section. Practically identical Chl/F-ratios were found for the diatom-dominated waters of the rivers␣Saar and Saale, suggesting that the same instrument calibration parameters may be applied for hydrographically similar surface waters. For this particular case, despite of the present methodological limitations, the potential of PAM fluorometry in limnology could be demonstrated. Light response curves were measured to estimate primary production with a spectrally resolved model in daily courses at two sampling sites. Fluorescence based primary production was closely correlated with measured oxygen evolution rates until midday. In the afternoon, at the water surface the fluorescence approach gave higher␣rates than the measured oxygen evolution. Possible explanations for the observed differences are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a*:

chlorophyll aspecific absorption;

Chl:

chlorophyll

ETR:

relative electron transport rate

F:

fluorescence yield

F′m :

maximal fluorescence yield of illuminated sample

ΦPS II :

Photosytem II quantum yield

IK :

PAR-value characteristic for light saturation

LED:

light-emitting diode

LL:

low light

ML:

medium light

PAM:

pulse amplitude modulation

PAR:

photosynthetically active radiation

Pmax :

maximal rate of photosynthesis

PP:

primary production

PS:

photosystem

Qphar :

absorbed pho-tosynthetically active radiation

RLC:

rapid light curves

σPS II :

functional absorption cross section of Photosystem II

References

  • RH Aalderink R Jovin (1997) ArticleTitleEstimation of the photosynthesis/irradiance (P/I) curve parameters from light and dark bottles experiments J Plankton Res 19 1713–1742

    Google Scholar 

  • JF Allen (1992) ArticleTitleProtein phosphorylation in regulation of photosynthesis Biochim Biophys Acta 1098 275–335 Occurrence Handle1310622

    PubMed  Google Scholar 

  • K Asada (1996) Radical production and scavenging in chloroplasts NR Baker (Eds) Photosynthesis and the Environment, Kluwer Academic Publishers Dordrecht, The Netherlands 123–150

    Google Scholar 

  • K Asada (1999) ArticleTitleThe water-water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons Ann Rev Plant Physiol Plant Mol Biol 50 601–639 Occurrence Handle10.1146/annurev.arplant.50.1.601

    Article  Google Scholar 

  • MR Badger GD Price (1992) ArticleTitleThe CO2 concentrating mechanism in cyanobacteria and green algae Physiol Platarum 84 606–615 Occurrence Handle10.1034/j.1399-3054.1992.840416.x

    Article  Google Scholar 

  • MR Badger U Schreiber (1993) ArticleTitleEffects of inorganic carbon accumulation on photosynthetic oxygen reduction and cyclic electron flow in the cyanobacterium Synechococcus PCC7942 Photosynth Res 37 177–191 Occurrence Handle10.1007/BF00032822

    Article  Google Scholar 

  • R Barone L Naselli-Flores (1994) ArticleTitlePhytoplankton dynamics in a shallow, hypertrophic reservoir (lake Arancio, Sicily) Hydrobiologia 289 199–214 Occurrence Handle10.1007/BF00007421

    Article  Google Scholar 

  • MJ Behrenfeld PG Falkowski (1997) ArticleTitleA consumer’s guide to phytoplankton primary productivity models Limnol Oceanogr 42 IssueID7 1479–1491

    Google Scholar 

  • M Beutler KH Wiltshire B Meyer C Moldaenke C Lüring M Meyerhöfer U-P Hansen H Dau (2002) ArticleTitleA fluorometric method for the differentiation of algal populations in vivo and in situ Photosynth Res 72 39–53 Occurrence Handle10.1023/A:1016026607048

    Article  Google Scholar 

  • M Beutler KH Wiltshire M Arp J Kruse C Reineke C Moldaenke U-P Hansen (2003) ArticleTitleA reduced model of the fluorescence from the cyanobacterial photosynthetic apparatus designed for the in situ detection of cyanobacteria Biochim Biophys Acta 1604 33–46 Occurrence Handle12686419

    PubMed  Google Scholar 

  • HW Bischoff HC Bold (1963) ArticleTitleSome soil algae from Enchanted Rock and related algal species. Phycological studies IV University Texas Publication 6417 1–213

    Google Scholar 

  • A Bricaud AL Bedhomme A Morel (1988) ArticleTitleOptical properties of diverse phytoplanktonic species: experimental results and theoretical interpretations J Plankton Res 10 IssueID5 851–873

    Google Scholar 

  • C Büchel C Wilhelm I Lenartz-Weiler (1988) ArticleTitleThe molecular analysis of the light adaption reactions in the yellow-green alga Pleurochloris meiringensis (Xanthophyceae) Bot Acta 4 306–310

    Google Scholar 

  • D Campbell V Hurry AK Clarke P Gustaffson G Öquist (1998) ArticleTitleChlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation Microbiol Mol Biol R 62 IssueID3 667–683

    Google Scholar 

  • JR DeEll PMA Toivonen (Eds) (2003) Practical Applications of Chlorophyll Fluorescence in Plant Biology. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Z Dubinsky PG Falkowski K Wyman (1986) ArticleTitleLight harvesting and utilization by phytoplankton Plant Cell Physiol 27 IssueID7 1335–1349

    Google Scholar 

  • MD DuRand RJ Olson (1998) ArticleTitleDiel patterns in optical properties of the chlorophyte Nanochloris sp.: relating individual-cell to bulk measurements Limnol Oceanogr 43 1107–1118

    Google Scholar 

  • PHC Eilers JCH Peeters (1988) ArticleTitleA model for the relationship between light intensity and the rate of photosynthesis in phytoplankton Ecol Model 42 199–215 Occurrence Handle10.1016/0304-3800(88)90057-9

    Article  Google Scholar 

  • PG Falkowski Z Kolber (1995) ArticleTitleVariations in chlorophyll fluorescence yields in phytoplankton in the world oceans Aust J Plant Physiol 22 341–355

    Google Scholar 

  • PG Falkowski K Wyman AC Ley DC Mauzerall (1986) ArticleTitleRelationship of steady state photosynthesis to fluorescence in eucaryotic algae Biochim Biophys Acta 849 183–192

    Google Scholar 

  • FL Figueroa R Conde-Alvarez I Gomez (2003) ArticleTitleRelations between electron transport rates determined by pulse amplitude modulated chlorophyll fluorescence and oxygen evolution in macroalgae under different light conditions Photosynth Res 75 259–275 Occurrence Handle10.1023/A:1023936313544

    Article  Google Scholar 

  • AL Friedman RS Alberte (1986) ArticleTitleBiogenesis and light regulation of the major light harvesting chlorophyll-protein of diatoms Plant Physiol 80 43–51

    Google Scholar 

  • C Geel W Versluis JFH Snel (1997) ArticleTitleEstimation of oxygen evolution by marine phytoplankton from measurement of the efficiency of Photosystem II electron flow Photosynth Res 51 61–70 Occurrence Handle10.1023/A:1005779112140

    Article  Google Scholar 

  • RJ Geider (1987) ArticleTitleLight and temperature dependence of the carbon to chlorophyll a ratio in microalgae and cyanobacteria: implications for physiology and growth of phytoplankton New Phytol 106 1–34

    Google Scholar 

  • RJ Geider T Platt JA Raven (1986) ArticleTitleSize dependence of growth and photosynthesis in diatoms: a synthesis Mar Ecol Prog Ser 30 93–104

    Google Scholar 

  • B Genty JM Briantais NR Baker (1989) ArticleTitleThe relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence Biochim Biophys Acta 990 87–92

    Google Scholar 

  • M Gilbert A Domin A Becker C Wilhelm (2000) ArticleTitleEstimation of primary productivity by chlorophyll a in vivo fluorescence in freshwater phytoplankton Photosynthetica 38 IssueID1 111–126 Occurrence Handle10.1023/A:1026708327185

    Article  Google Scholar 

  • M Gilbert C Wilhelm M Richter (2000) ArticleTitleBio-optical modelling of oxygen evolution using in vivo fluorescence: comparison of measured and calculated photosynthesis/irradiance (P-I) curves in four representative phytoplankton species J Plant Physiol 157 307–314

    Google Scholar 

  • GP Harris (1984) ArticleTitlePhytoplankton productivity and growth measurements: past, present and future J Plankton Res 6 219–235

    Google Scholar 

  • T Jakob R Goss C Wilhelm (1999) ArticleTitleActivation of diadinoxanthin de-epoxidase due to a chlororespiratory proton gradient in the drak in the diatom Phaeodactylum tricornutum Plant Biol 1 76–82

    Google Scholar 

  • SW Jeffrey GF Humphrey (1975) ArticleTitleNew spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton Biochem Physiol Pflanzen 167 191–194

    Google Scholar 

  • Y Kashino S Kudoh Y Hayashi Y Suzuki T Odate T Hirawake K Satoh M Fukuchi (2002) ArticleTitleStrategies of phytoplankton to perform effective photosynthesis in the North Water Deep-Sea Res II 49 5049–5061 Occurrence Handle10.1016/S0967-0645(02)00177-7

    Article  Google Scholar 

  • H Kautsky A Hirsch (1931) ArticleTitleNeue Versuche zur Kohlensäureassimilation Naturwissenschaften 19 964 Occurrence Handle10.1007/BF01516164

    Article  Google Scholar 

  • JTO Kirk (1994) Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press New York

    Google Scholar 

  • Z Kolber PG Falkowski (1993) ArticleTitleUse of active fluorescence to estimate phytoplankton photosynthesis in situ Limnol Oceanogr 38 1646–1665

    Google Scholar 

  • J Kolbowski U Schreiber (1995) Computer-controlled phytoplankton analyzer based on a 4-wavelengths PAM chlorophyll fluorometer P Mathis (Eds) Photosynthesis: from Light to Biosphere (V) Kluwer Academic Publishers Dordrecht, The Netherlands 825–828

    Google Scholar 

  • G Krause E Weis (1991) ArticleTitleChlorophyll fluorescence and photosynthesis: The basics Annu Rev Plant Phys 42 313–349 Occurrence Handle10.1146/annurev.pp.42.060191.001525

    Article  Google Scholar 

  • AW Larkum (2003) Light-harvesting systems in algae AW Larkum SE Douglas JA Raven (Eds) Photosynthesis in Algae Kluwer Academic Publishers Dordrecht, The Netherlands 277–304

    Google Scholar 

  • J Lavaud H Gorkom Particlevan A Etienne (2002) ArticleTitlePhotosystem II electron transfer cycle and chlororespiration in planktonic diatoms Photosynth Res 74 51–59 Occurrence Handle10.1023/A:1020890625141

    Article  Google Scholar 

  • AC Ley D Mauzerall (1998) ArticleTitleAbsolute absorption cross sections for PS II and the minimum quantum requirement for photosynthesis in Chlorella vulgaris Biochim Biophys Acta 680 95–106

    Google Scholar 

  • M Lohr C Wilhelm (1999) ArticleTitleAlgae displaying the diadinoxanthin cycle also possess the violaxanthin cycle Proc Natl Acad Sci USA 96 8784–8789 Occurrence Handle10.1073/pnas.96.15.8784 Occurrence Handle10411953

    Article  PubMed  Google Scholar 

  • CJ Lorenzen (1966) ArticleTitleA method for the continuous measurement of in vivo chlorophyll concentration Deep-Sea Res 13 223–227

    Google Scholar 

  • H Mi T Endo U Schreiber T Ogawa K Asada (1992) ArticleTitleElectron donation from cyclic and respiratory flows to photosynthetic intersystem chain is mediated by pyridine nucleotide dehydrogenase in the cyanobacterium Synechocystis PCC 6803 Plant Cell Physiol 33 1233–1237

    Google Scholar 

  • M Mimuro S Akimoto (2003) Carotenoids of light harvesting systems: energy transfer processes from fucoxanthin and peridinin to chlorophyll AW Larkum SE Douglas JA Raven (Eds) Photosynthesis in Algae, Kluwer Academic Publishers Dordrecht, The Netherlands 335–349

    Google Scholar 

  • DR Ort NR Baker (2002) ArticleTitleA photoprotective role for O2 as an alternative sink in photosynthesis Curr Opin Plant Biol 5 193–198 Occurrence Handle10.1016/S1369-5266(02)00259-5 Occurrence Handle11960735

    Article  PubMed  Google Scholar 

  • TG Owens (1986) ArticleTitleLight-harvesting function in the diatom Phaeodactylum tricornutum. II. Distribution of excitation energy between photosystems Plant Physiol 80 739–746

    Google Scholar 

  • L Provasoli JJA Mc Laughin MR Droop (1975) ArticleTitleThe development of artificial media for marine algae Arch Mikrobiol 25 392–428 Occurrence Handle10.1007/BF00446694

    Article  Google Scholar 

  • JR Reinfelder AML Kraepiel FMM Morel (2000) ArticleTitleUnicellular C4 photosynthesis in a marine diatom Nature 407 996–999 Occurrence Handle10.1038/35039612 Occurrence Handle11069177

    Article  PubMed  Google Scholar 

  • C Rotatore B Colman M Kuzma (1995) ArticleTitleThe active uptake of carbon dioxide by the marine diatoms Phaeodactylum tricornutum and Cyclotella sp Plant Cell Environ 18 913–918

    Google Scholar 

  • M Schnitzler-Parker EV Armbrust J Piovia-Scott RG Keil (2004) ArticleTitleInduction of photorespiration by light in the centric diatom Thalassiosira weissflogii (Bacillariophyceae): Molecular characterization and physiological consequences J Phycol 40 557–567

    Google Scholar 

  • Schreiber U (1998). Chlorophyll fluorescence: new instruments for new applications. In Garab G (ed) Photosynthesis: Mechanisms and Effects (V), pp 4253–4258. Kluwer Academic Publishers, Dordrecht, The Netherlands

  • Schreiber U (2004) Pulse-Amplitude-Modulation (PAM) fluorometry and saturation pulse method: an overview. In: Papageorgiou GC and Govindjee (eds) Chlorophyll Fluorescence: a Signature of Photosynthesis, pp 279–319. Kluwer Academic Publishers, Dordrecht, The Netherlands

  • U Schreiber C Neubauer (1990) ArticleTitleO2-dependent electron flow, membrane energization and the mechanism of non-photochemical quenching of chlorophyll fluorescence Photosynth Res 25 279–293 Occurrence Handle10.1007/BF00033169

    Article  Google Scholar 

  • U Schreiber W Bilger U Schliwa (1986) ArticleTitleContinuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer Photosynth Res 10 51–62 Occurrence Handle10.1007/BF00024185

    Article  Google Scholar 

  • Schreiber U, Bilger W and Neubauer C (1994). Chlorophyll fluorescence as a noninvasive indicator for rapid assessment of in vivo photosynthesis. In Schulze E-D and Caldwell MM (eds) Ecophysiology of Photosynthesis, pp 49–70. Springer, Berlin

  • U Schreiber H Hormann C Neubauer C Klughammer (1995a) ArticleTitleAssessment of Photosystem II photochemical quantum yield by chlorophyll fluorescence quenching analysis Aust J Plant Physiol 22 209–220

    Google Scholar 

  • U Schreiber T Endo H Mi K Asada (1995b) ArticleTitleQuenching analysis of chlorophyll fluorescence by the saturation pulse method: Particular aspects relating to the study of eucaryotic algae and cyanobacteria Plant Cell Physiol 36 873–882

    Google Scholar 

  • U Schreiber R Gademann PJ Ralph AWD Larkum (1997) ArticleTitleAssessment of photosynthetic performance of prochloron in Lissoclinum patella in hospite by chlorophyll fluorescence measurements Plant Cell Physiol 38 945–951

    Google Scholar 

  • U Selig T Hübener M Michalik (2002) ArticleTitleDissolved and particulate phosphorus forms in a eutrophic shallow lake Aquat Sci 64 97–105 Occurrence Handle10.1007/s00027-002-8058-9

    Article  Google Scholar 

  • RC Smith BB Prézelin RR Bidigare KS Baker (1989) ArticleTitleBio-optical modeling of photosynthetic production in coastal waters Limnol Oceanogr 34 IssueID8 1524–1544

    Google Scholar 

  • PA Staehr P Henriksen S Markager (2002) ArticleTitlePhotoacclimation of four marine phytoplankton species to irradiance and nutrient availability Mar Ecol Prog Ser 238 47–59

    Google Scholar 

  • D Stramski A Shalapyonok RA Reynolds (1995) ArticleTitleOptical characterization of the oceanic unicellular cyanobacterium Synechococcus grown under a day-light cycle in natural irradiance J Geophys Res 100 13295–308 Occurrence Handle10.1029/95JC00452

    Article  Google Scholar 

  • Trissl HW (2003). Modeling the excitation energy capture in thylakoid membranes. In Larkum AW, Douglas SE and Raven JA (eds) Photosynthesis in Algae, pp 245–276. Kluwer Academic Publishers, Dordrecht, The Netherlands

  • A Tuji (2000) ArticleTitleThe effect of irradiance on the growth of different forms of freshwater diatoms: implications for succesion in attached diatom communities J Phycol 36 639–661 Occurrence Handle10.1046/j.1529-8817.2000.99212.x

    Article  Google Scholar 

  • AJ White C Critchley (1999) ArticleTitleRapid light curves: A new fluorescence method to assess the state of the photosynthetic apparatus Photosynth Res 59 63–72 Occurrence Handle10.1023/A:1006188004189

    Article  Google Scholar 

  • C Wilhelm P Krämer I Lenartz-Weiler (1989) ArticleTitleThe energy distribution between the photosystems and light-induced changes in the stoichiometry of system I and II reaction centers in the chlorophyll b-containing alga Mantoniella squamata (Prasinophyceae) Photosynth Res 20 221–233

    Google Scholar 

  • Wilhelm C, Bida J and Domain A (1995a). Is the measure of PSII quantum yield by means of in vivo chl a-fluorescence really a direct measure of phytoplankton primary production? In Mathis P (ed) Photosynthesis: from Light to Biosphere (V), pp 809–812. Kluwer Academic Publishers Dordrecht, The Netherlands

  • C Wilhelm P Volkmar C Lohmann A Becker M Meyer (1995) ArticleTitleThe HPLC-aided pigment analysis of phytoplankton cells as a powerful tool in water quality control J Water Supply Res T 44 IssueID3 132–141

    Google Scholar 

  • CS Yentsch DA Phinney (1985) ArticleTitleSpectral fluorescence: a taxonomic tool for studying the structure of phytoplankton populations J Plankton Res 7 617–632

    Google Scholar 

  • Y Zhang EE Prepas (1996) ArticleTitleRegulation of the dominance of planktonic diatoms and cyanobacteria in four eutrophic hardwater lakes by nutrients, water column stability and temperature Can J Fish Aqua Sci 53 621–633 Occurrence Handle10.1139/cjfas-53-3-621

    Article  Google Scholar 

  • R Ziegler K Egle (1965) ArticleTitleZur quantitativen Analyse der Chloroplastenpigmente. I. Kritische Überprüfung der spektralphotometrischen Chlorophyllbestimmung Beitr Biol Pfl 41 11–37

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torsten Jakob.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jakob, T., Schreiber, U., Kirchesch, V. et al. Estimation of chlorophyll content and daily primary production of the major algal groups by means of multiwavelength-excitation PAM chlorophyll fluorometry: performance and methodological limits. Photosynth Res 83, 343–361 (2005). https://doi.org/10.1007/s11120-005-1329-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-005-1329-2

Keywords

Navigation