Skip to main content
Log in

DNA METHYLTRANSFERASE 1 is involved in mCG and mCCG DNA methylation and is essential for sporophyte development in Physcomitrella patens

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

DNA methylation has a crucial role in plant development regulating gene expression and silencing of transposable elements. Maintenance DNA methylation in plants occurs at symmetrical mCG and mCHG contexts (m = methylated) and is maintained by DNA METHYLTRANSFERASE 1 (MET1) and CHROMOMETHYLASE (CMT) DNA methyltransferase protein families, respectively. While angiosperm genomes encode for several members of MET1 and CMT families, the moss Physcomitrella patens, serving as a model for early divergent land plants, carries a single member of each family. To determine the function of P. patens PpMET we generated ΔPpmet deletion mutant which lost mCG and unexpectedly mCCG methylation at loci tested. In order to evaluate the extent of mCCG methylation by MET1, we reexamined the Arabidopsis thaliana Atmet1 mutant methylome and found a similar pattern of methylation loss, suggesting that maintenance of DNA methylation by MET1 is conserved through land plant evolution. While ΔPpmet displayed no phenotypic alterations during its gametophytic phase, it failed to develop sporophytes, indicating that PpMET plays a role in gametogenesis or early sporophyte development. Expression array analysis revealed that the deletion of PpMET resulted in upregulation of two genes and multiple repetitive sequences. In parallel, expression analysis of the previously reported ΔPpcmt mutant showed that lack of PpCMT triggers overexpression of genes. This overexpression combined with loss of mCHG and its pleiotropic phenotype, implies that PpCMT has an essential evolutionary conserved role in the epigenetic control of gene expression. Collectively, our results suggest functional conservation of MET1 and CMT families during land plant evolution. A model describing the relationship between MET1 and CMT in CCG methylation is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CMT:

CHROMOMETHYLASE

DRM:

DOMAINS REARRANGED METHYLTRANSFERASE

MET1:

DNA METHYLTRANSFERASE

References

  • Ashton NW, Cove DJ (1977) The isolation and preliminary characterisation of auxotrophic and analogue resistant mutants of the moss Physcomitrella patens. Mol Gen Genet 154:87–95

    Article  Google Scholar 

  • Baldi P, Long AD (2001) A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes. Bioinformatics 17:509–519

    Article  CAS  PubMed  Google Scholar 

  • Bartee L, Malagnac F, Bender J (2001) Arabidopsis cmt3 chromomethylase mutations block non-CG methylation and silencing of an endogenous gene. Genes Dev 15:1753–1758

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Beike AK et al (2015) Insights from the cold transcriptome of Physcomitrella patens: global specialization pattern of conserved transcriptional regulators and identification of orphan genes involved in cold acclimation. New Phytol 205:869–881

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bezanilla M, Pan A, Quatrano RS (2003) RNA interference in the moss Physcomitrella patens. Plant Physiol 133:470–474

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bostick M, Kim JK, Esteve PO, Clark A, Pradhan S, Jacobsen SE (2007) UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science 317:1760–1764

    Article  CAS  PubMed  Google Scholar 

  • Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinform 10:421

    Article  Google Scholar 

  • Cao X, Jacobsen SE (2002) Role of the arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing. Curr Biol 12:1138–1144

    Article  CAS  PubMed  Google Scholar 

  • Cao X, Springer NM, Muszynski MG, Phillips RL, Kaeppler S, Jacobsen SE (2000) Conserved plant genes with similarity to mammalian de novo DNA methyltransferases. Proc Natl Acad Sci USA 97:4979–4984

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cedar H, Bergman Y (2012) Programming of DNA methylation patterns. Annu Rev Biochem 81:97–117

    Article  CAS  PubMed  Google Scholar 

  • Cokus SJ et al (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452:215–219

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cove D (2005) The moss Physcomitrella patens. Annu Rev Genet 39:339–358

    Article  CAS  PubMed  Google Scholar 

  • Dangwal M, Kapoor S, Kapoor M (2014) The PpCMT chromomethylase affects cell growth and interacts with the homolog of LIKE HETEROCHROMATIN PROTEIN 1 in the moss Physcomitrella patens. Plant J 77:589–603

    Article  CAS  PubMed  Google Scholar 

  • Du J et al (2012) Dual binding of chromomethylase domains to H3K9me2-containing nucleosomes directs DNA methylation in plants. Cell 151:167–180

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Feng S et al (2010) Conservation and divergence of methylation patterning in plants and animals. Proc Natl Acad Sci USA 107:8689–8694

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Finnegan EJ, Peacock WJ, Dennis ES (1996) Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proc Natl Acad Sci USA 93:8449–8454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Frank W, Decker EL, Reski R (2005) Molecular tools to study Physcomitrella patens. Plant Biol (Stuttg) 7:220–227

    Article  CAS  Google Scholar 

  • Gehring M (2013) Genomic imprinting: insights from plants. Annu Rev Genet 47:187–208

    Article  CAS  PubMed  Google Scholar 

  • Genger RK, Kovac KA, Dennis ES, Peacock WJ, Finnegan EJ (1999) Multiple DNA methyltransferase genes in Arabidopsis thaliana. Plant Mol Biol 41:269–278

    Article  CAS  PubMed  Google Scholar 

  • Goll MG, Bestor TH (2005) Eukaryotic cytosine methyltransferases. Annu Rev Biochem 74:481–514

    Article  CAS  PubMed  Google Scholar 

  • Henikoff S, Comai L (1998) A DNA methyltransferase homolog with a chromodomain exists in multiple polymorphic forms in Arabidopsis. Genetics 149:307–318

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hiss M et al (2014) Large-scale gene expression profiling data for the model moss Physcomitrella patens aid understanding of developmental progression, culture and stress conditions. Plant J 79:530–539

    Article  CAS  PubMed  Google Scholar 

  • Hohe A, Rensing SA, Mildner M, Lang D, Reski R (2002) Day length and temperature strongly influence sexual reproduction and expression of a novel MADS-box gene in the moss Physcomitrella patens. Plant Biol 4:595–762

    Article  CAS  Google Scholar 

  • Hou PQ et al (2014) Functional characterization of Nicotiana benthamiana chromomethylase 3 in developmental programs by virus-induced gene silencing. Physiol Plant 150:119–132

    Article  CAS  PubMed  Google Scholar 

  • Hu L et al (2014) Mutation of a major CG methylase in rice causes genome-wide hypomethylation, dysregulated genome expression, and seedling lethality. Proc Natl Acad Sci USA 111:10642–10647

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jullien PE, Kinoshita T, Ohad N, Berger F (2006) Maintenance of DNA methylation during the Arabidopsis life cycle is essential for parental imprinting. Plant Cell 18:1360–1372

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jullien PE, Mosquna A, Ingouff M, Sakata T, Ohad N, Berger F (2008) Retinoblastoma and its binding partner MSI1 control imprinting in Arabidopsis. PLoS Biol 6:e194

    Article  PubMed Central  PubMed  Google Scholar 

  • Kankel MW et al (2003) Arabidopsis MET1 cytosine methyltransferase mutants. Genetics 163:1109–1122

    CAS  PubMed Central  PubMed  Google Scholar 

  • Katz A, Oliva M, Mosquna A, Hakim O, Ohad N (2004) FIE and CURLY LEAF polycomb proteins interact in the regulation of homeobox gene expression during sporophyte development. Plant J 37:707–719

    Article  CAS  PubMed  Google Scholar 

  • Kawashima T, Berger F (2014) Epigenetic reprogramming in plant sexual reproduction. Nat Rev Genet 15:613–624

    Article  CAS  PubMed  Google Scholar 

  • Kim MY, Zilberman D (2014) DNA methylation as a system of plant genomic immunity. Trends Plant Sci 19:320–326

    Article  CAS  PubMed  Google Scholar 

  • Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lindroth AM, Cao X, Jackson JP, Zilberman D, McCallum CM, Henikoff S, Jacobsen SE (2001) Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation. Science 292:2077–2080

    Article  CAS  PubMed  Google Scholar 

  • Lister R, O’Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, Ecker JR (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133:523–536

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Malik G, Dangwal M, Kapoor S, Kapoor M (2012) Role of DNA methylation in growth and differentiation in Physcomitrella patens and characterization of cytosine DNA methyltransferases. FEBS J 279:4081–4094

    Article  CAS  PubMed  Google Scholar 

  • Marchler-Bauer A et al (2011) CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 39:D225–D229

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marchler-Bauer A et al (2013) CDD: conserved domains and protein three-dimensional structure. Nucleic Acids Res 41:D348–D352

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marchler-Bauer A et al (2015) CDD: NCBI’s conserved domain database. Nucleic Acids Res 43:D222–D226

  • Mathieu O, Reinders J, Caikovski M, Smathajitt C, Paszkowski J (2007) Transgenerational stability of the Arabidopsis epigenome is coordinated by CG methylation. Cell 130:851–862

    Article  CAS  PubMed  Google Scholar 

  • Mosquna A, Katz A, Decker EL, Rensing SA, Reski R, Ohad N (2009) Regulation of stem cell maintenance by the Polycomb protein FIE has been conserved during land plant evolution. Development 136:2433–2444

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama T, Hiwatashi Y, Sakakibara I, Kato M, Hasebe M (2000) Tagged mutagenesis and gene-trap in the moss Physcomitrella patens by shuttle mutagenesis. DNA Res 7:9–17

    Article  CAS  PubMed  Google Scholar 

  • Noy-Malka C, Yaari R, Itzhaki R, Mosquna A, Auerbach Gershovitz N, Katz A, Ohad N (2014) A single CMT methyltransferase homolog is involved in CHG DNA methylation and development of Physcomitrella patens. Plant Mol Biol 84:719–735

    Article  CAS  PubMed  Google Scholar 

  • Papa CM, Springer NM, Muszynski MG, Meeley R, Kaeppler SM (2001) Maize chromomethylase Zea methyltransferase2 is required for CpNpG methylation. Plant Cell 13:1919–1928

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pavlopoulou A, Kossida S (2007) Plant cytosine-5 DNA methyltransferases: structure, function, and molecular evolution. Genomics 90:530–541

    Article  CAS  PubMed  Google Scholar 

  • Pradhan S, Adams RL (1995) Distinct CG and CNG DNA methyltransferases in Pisum sativum. Plant J 7:471–481

    Article  CAS  PubMed  Google Scholar 

  • Prigge MJ, Bezanilla M (2010) Evolutionary crossroads in developmental biology: Physcomitrella patens. Development 137:3535–3543

    Article  CAS  PubMed  Google Scholar 

  • Rensing SA et al (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319:64–69

    Article  CAS  PubMed  Google Scholar 

  • Saze H, Mittelsten Scheid O, Paszkowski J (2003) Maintenance of CpG methylation is essential for epigenetic inheritance during plant gametogenesis. Nat Genet 34:65–69

    Article  CAS  PubMed  Google Scholar 

  • Sharif J et al (2007) The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 450:908–912

    Article  CAS  PubMed  Google Scholar 

  • She W, Baroux C (2014) Chromatin dynamics during plant sexual reproduction. Front Plant Sci 5:354

    Article  PubMed Central  PubMed  Google Scholar 

  • Stroud H et al (2013a) Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis. Nat Struct Mol Biol 21:64–72

    Article  PubMed Central  PubMed  Google Scholar 

  • Stroud H, Greenberg MV, Feng S, Bernatavichute YV, Jacobsen SE (2013b) Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome. Cell 152:352–364

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vongs A, Kakutani T, Martienssen RA, Richards EJ (1993) Arabidopsis thaliana DNA methylation mutants. Science 260:1926–1928

    Article  CAS  PubMed  Google Scholar 

  • Watson M, Hawkes E, Meyer P (2014) Transmission of epi-alleles with MET1-dependent dense methylation in Arabidopsis thaliana. PLoS One 9:e105338

    Article  PubMed Central  PubMed  Google Scholar 

  • Wolf L, Rizzini L, Stracke R, Ulm R, Rensing SA (2010) The molecular and physiological responses of Physcomitrella patens to ultraviolet-B radiation. Plant Physiol 153:1123–1134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Woo HR, Pontes O, Pikaard CS, Richards EJ (2007) VIM1, a methylcytosine-binding protein required for centromeric heterochromatinization. Genes Dev 21:267–277

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xiao W, Custard KD, Brown RC, Lemmon BE, Harada JJ, Goldberg RB, Fischer RL (2006) DNA methylation is critical for Arabidopsis embryogenesis and seed viability. Plant Cell 18:805–814

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamauchi T, Johzuka-Hisatomi Y, Terada R, Nakamura I, Iida S (2014) The MET1b gene encoding a maintenance DNA methyltransferase is indispensable for normal development in rice. Plant Mol Biol 85:219–232

    Article  CAS  PubMed  Google Scholar 

  • Zemach A, McDaniel IE, Silva P, Zilberman D (2010) Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 328:916–919

    Article  CAS  PubMed  Google Scholar 

  • Zemach A et al (2013) The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell 153:193–205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang X et al (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis. Cell 126:1189–1201

    Article  CAS  PubMed  Google Scholar 

  • Zimmer AD et al (2013) Reannotation and extended community resources for the genome of the non-seed plant Physcomitrella patens provide insights into the evolution of plant gene structures and functions. BMC Genom 14:498

    Article  CAS  Google Scholar 

Download references

Acknowledgments

C. N. M and R. Y were supported in part by a matching Tel-Aviv University Deans doctoral fellowship and the Manna foundation. This research was supported by the Israeli Science Foundation Grant #767/09, and by the Israel Korea Program #3-824 financed by the Ministry of Science and Technology, both granted to N.O. Additional support from the German-Israeli Foundation for Scientific Research and Development (GIF I-832-130.12/2004 and I-1008-154.13-2008 to N. O. and R. R.) and by the Excellence Initiative of the German Federal and State Governments (EXC294 to R. R.) is gratefully acknowledged.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nir Ohad.

Additional information

Rafael Yaari and Chen Noy-Malka have contributed equally to this work.

Transgenic lines described in this study were deposited in the International Moss Stock Center (http://www.moss-stock-center.org/) with the accessions IMSC 40758 (ΔPpmet 5), IMSC 40759 (ΔPpmet 227) and IMSC 40760 (ΔPpmet 262).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 416 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaari, R., Noy-Malka, C., Wiedemann, G. et al. DNA METHYLTRANSFERASE 1 is involved in mCG and mCCG DNA methylation and is essential for sporophyte development in Physcomitrella patens . Plant Mol Biol 88, 387–400 (2015). https://doi.org/10.1007/s11103-015-0328-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-015-0328-8

Keywords

Navigation