Skip to main content
Log in

Overproduction of stromal ferredoxin:NADPH oxidoreductase in H2O2-accumulating Brassica napus leaf protoplasts

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The isolation of Brassica napus leaf protoplasts induces reactive oxygen species generation and accumulation in the chloroplasts. An activated isoform of NADPH oxidase-like protein was detected in the protoplasts and the protoplast chloroplasts. The purpose of this study is to define the NADH oxidase-like activities in the H2O2-accumulating protoplast chloroplasts. Proteomic analysis of this protein revealed an isoform of ferredoxin:NADPH oxidoreductase (FNR1). While leaves highly expressed the LFNR1 transcript, protoplasts decreased the expression significantly. The protoplast chloroplasts predominantly expressed soluble FNR1 proteins. While the albino leaves of white kale (Brassica oleracea var. acephala f. tricolor cv. white pigeon) expressed FNR1 protein at the same level as B. napus leaves, the protoplasts of albino leaves displayed reduced FNR1 expression. The albino leaf protoplasts of white kale generated and accumulated H2O2 in the cytoplasm and on the plasma membrane. Intracellular pH showed that the chloroplasts were acidic, which suggest that excess H+ was generated in chloroplast stroma. NADPH content of the protoplast chloroplasts increased by over sixfold during the isolation of protoplasts. This study reports a possibility of mediating electrons to oxygen by an overproduced soluble FNR, and suggests that the FNR has a function in utilizing any excess reducing power of NADPH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allan AC, Fluhr R (2001) Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells. Plant Cell 9:1559–1572

    Article  Google Scholar 

  • Allen JF, Hall DO (1974) The relationship of oxygen uptake to electron transport in photosystem I of isolated chloroplasts: the role of superoxide and ascorbate. Biochem Biophys Res Commun 58:579–585

    Article  CAS  PubMed  Google Scholar 

  • Alte F, Stengel A, Benz JP, Petersen E, Jürgen Soll J, Michael Groll M, Bölter B (2010) Ferredoxin:NADPH oxidoreductase is recruited to thylakoids by binding to a polyproline type II helix in a pH-dependent manner. PNAS 107:19260–19265

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Asada K (2000) The water–water cycle as alternative photon and electron sinks. Philos Trans R Soc Lond B 355:1419–1431

    Article  CAS  Google Scholar 

  • Asada K, Kiso K, Yoshikawa K (1974) Univalent reduction of molecular oxygen by spinach chloroplasts on Illumination. J Biol Chem 249:2175–2181

    CAS  PubMed  Google Scholar 

  • Colvert KK, Davis DJ (1988) Characterization of a covalently linked complex involving ferredoxin and ferredoxin:NADP reductase. Photosynth Res 17:213–245

    Article  Google Scholar 

  • Corthals GL, Gygi SP, Aebersold R, Patterson SD (2000) Identification of proteins by mass spectrometry. In: Rabilloud T (ed) Proteome research: two-dimensional gel electrophoresis and identification methods (principles and practice). Springer, Berlin, pp 197–232

  • Davey MR, Anthony P, Power JB, Lowe KC (2005) Plant protoplasts: status and biotechnological perspectives. Biotechnol Adv 23:131–171

    Article  CAS  PubMed  Google Scholar 

  • Enami K, Ozawa T, Motohashi N, Nakamura M, Tanaka K, Hanaoka M (2011) Plastid-to-nucleus retrograde signals are essential for the expression of nuclear starch biosynthesis genes during amyloplast differentiation in tobacco BY-2 cultured cells. Plant Physiol 157:518–530

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Glyan’ko AK, Ischenko AA (2010) Structural and functional characteristics of plant NADPH oxidase: a review. Appl Biochem Microbiol 46:463–471

    Article  Google Scholar 

  • Hames BD (1990) One dimensional polyacrylamide gel electrophoresis. Oxford University Press, Oxford

  • Henzler T, Steudle E (2000) Transport and metabolic degradation of hydrogen peroxide in Chara corallina: model calculations and measurements with the pressure probe suggest transport of H2O2 across water channels. J Exp Bot 51:2053–2066

    Article  CAS  PubMed  Google Scholar 

  • Jones DP (1981) Determination of pyridine dinucleotides in cell extracts by high-performance liquid chromatography. J Chromatogr 225:446–449

    Article  CAS  PubMed  Google Scholar 

  • Jones MA, Raymond MJ, Yang Z, Smirnoff N (2007) NADPH oxidase-dependent reactive oxygen species formation required for root hair growth depends on ROP GTPase. J Exp Bot 58:1261–1270

    Article  CAS  PubMed  Google Scholar 

  • Kaiser WM (1979) Reversible inhibition of the Calvin cycle and activation of oxidative pentose phosphate cycle in isolated intact chloroplasts by hydrogen peroxide. Planta 145:377–382

    Article  CAS  PubMed  Google Scholar 

  • Karplus PA, Bruns CM (1994) Structure–function relations for ferredoxin reductase. J Bioenerg Biomembr 26:89–99

    Article  CAS  PubMed  Google Scholar 

  • Keyer K, Gort AS, Imlay JA (1995) Superoxide and the production of oxidative DNA damage. J Bacteriol 177:6782–6790

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kieselbach T, Hagman Å, Andersson B, Schröder WP (1998) The thylakoid lumen of chloroplasts: isolation and characterization. J Biol Chem 273:6710–6716

    Article  CAS  PubMed  Google Scholar 

  • Kovtun Y, Chiu WL, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci USA 97:2940–2945

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krieger-Liszkay A, Fufezan C, Trebst A (2008) Singlet oxygen production in photosystem II and related protection mechanism. Photosynth Res 98:551–564

    Article  CAS  PubMed  Google Scholar 

  • Kurisu G, Kusunoki M, Katoh E, Yamazaki T, Teshima K, Onda Y, Kimata-Ariga Y, Hase T (2001) Structure of the electron transfer complex between ferredoxin and ferredoxin-NADP(+) reductase. Nat Struct Biol 8:117–121

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Garcia JF, Monte E, Quail PH (1999) A simple, rapid and quantitative method for preparing Arabidopsis protein extracts for immunoblot analysis. Plant J 20:251–257

    Article  CAS  PubMed  Google Scholar 

  • Matsuo M, Endo T, Asada K (1998) Properties of the respiratory NAD(P)H dehydrogenase isolated from the cyanobacterium Synechocystis PCC6803. Plant Cell Physiol 39:263–267

    Article  CAS  PubMed  Google Scholar 

  • Miyake C, Screiber U, Hormann H, Sano S, Asada K (1998) The FAD-enzyme monodehydroascorbate radical reductase mediates photoproduction of superoxide radicals in spinach thylakoid membranes. Plant Cell Physiol 39:821–829

    Article  CAS  Google Scholar 

  • Moolna A, Bowsher CG (2010) The physiological importance of photosynthetic ferredoxin NADP+ oxidoreductase (FNR) isoforms in wheat. J Exp Bot 61:2669–2681

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mukherjee SP, Lynn WS (1977) Reduced nicotinamide adenine dinucleotide phosphate oxidase in adipocyte plasma membrane and its activation by insulin. Arch Biochem Biophys 184:69–76

    Article  CAS  PubMed  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

  • Nakamura S (1970) Initiation of sulfite oxidation by spinach ferredoxin-NADP reductase and ferredoxin system: a model experiment on the superoxide anion radical production by metalloflavoproteins. Biochem Biophys Res Commun 41:177–183

    Article  CAS  PubMed  Google Scholar 

  • Pagani S, Vecchio G, Iametti S, Bianchi R, Bonomi F (1986) On the role of the 2Fe–2S cluster in the formation of the structure of spinach ferredoxin. Biochim Biophys Acta 870:538–544

    Article  CAS  Google Scholar 

  • Palatnik JF, Valle EM, Carrillo N (1997) Oxidative stress causes ferredoxin-NADP+ reductase solubilization from the thylakoid membranes in methyl viologen-treated plants. Plant Physiol 115:1721–1727

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2:1896–1906

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez RE, Lodeyro A, Poli HO, Zurbriggen M, Peisker M, Palatnik JF, Tognetti VB, Tschiersch H, Hajirezaei MR, Valle EM, Carrillo N (2007) Transgenic tobacco plants overexpressing chloroplastic ferredoxin-NADP(H) reductase display normal rates of photosynthesis and increased tolerance to oxidative stress. Plant Physiol 143:639–649

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sagi M, Fluhr R (2001) Superoxide production by plant homologues of the gp91phox NADPH oxidase, modulation of activity by calcium and by tobacco mosaic virus infection. Plant Physiol 126:1281–1290

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sagi M, Fluhr R (2006) Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol 141:336–340

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Satoh M, Haruta-Satoh E, Omori A, Oh-Ishi M, Kodera Y, Furudate S, Maeda T (2005) Effect of thyroxine on abnormal pancreatic proteomes of the hypothyroid rdw rat. Proteomics 5:1113–1124

    Article  CAS  PubMed  Google Scholar 

  • Schimmel SD, Kent C, Bischoff R, Vagelos PR (1973) Plasma membranes from cultured muscle cells: isolation procedure and separation of putative plasma-membrane marker enzymes. Proc Natl Acad Sci USA 70:3195–3199

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sumimoto H (2008) Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species. FEBS J 275:3249–3277

    Article  CAS  PubMed  Google Scholar 

  • Takeda S, Gapper C, Kaya H, Bell E, Kuchitsu K, Dolan L (2008) Local positive feedback regulation determines cell shape in root hair cells. Science 319:1241–1244

    Article  CAS  PubMed  Google Scholar 

  • Tewari RK, Kim S, Hahn EJ, Paek KY (2008) Involvement of nitric oxide-induced NADPH oxidase in adventitious root growth and antioxidant defence in Panax ginseng. Plant Biotechnol Rep 2:113–122

    Article  Google Scholar 

  • Tewari RK, Kumar P, Kim S, Hahn EJ, Paek KY (2009) Nitric oxide retards xanthine oxidase-mediated superoxide anion generation in Phalaenopsis flower: an implication of NO in the senescence and oxidative stress regulation. Plant Cell Rep 28:267–279

    Article  CAS  PubMed  Google Scholar 

  • Tewari RK, Watanabe D, Watanabe M (2012) Chloroplastic NADPH oxidase-like activity-mediated perpetual hydrogen peroxide generation in the chloroplast induces apoptotic-like death of Brassica napus leaf protoplasts. Planta 235:99–110

    Article  CAS  PubMed  Google Scholar 

  • Truitt CL, Wei HX, Pare PW (2004) A plasma membrane protein from Zea mays binds with the herbivore elicitor volicitin. Plant Cell 16:523–532

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Watanabe M, Hanamoto T, Watanabe Y (1998) Senescence development of Brassica napus leaf protoplast during isolation and subsequent culture. J Plant Physiol 152:487–493

    Article  CAS  Google Scholar 

  • Watanabe M, Setoguchi D, Uehara K, Ohtsuka W, Watanabe Y (2002) Apoptotic-like cell death of Brassica napus leaf protoplasts. New Phytol 156:417–426

    Article  Google Scholar 

  • Watanabe M, Ohnishi Y, Itoh Y, Yasuda K, Kamachi K, Ratcliffe RG (2011) Deamination role of inducible glutamate dehydrogenase isoenzyme 7 in Brassica napus leaf protoplasts. Phytochemistry 72:587–593

    Article  CAS  PubMed  Google Scholar 

  • Yabuta Y, Maruta T, Yoshimura K, Ishikawa T, Shigeoka S (2004) Two distinct redox signalling pathways for cytosolic APX induction under photooxidative stress. Plant Cell Physiol 45:1586–1594

    Article  CAS  PubMed  Google Scholar 

  • Yasuda K, Watanabe Y, Watanabe M (2007) Generation of intracellular reactive oxygen species during the isolation of Brassica napus leaf protoplasts. Plant Biotechnol 24:361–366

    Article  CAS  Google Scholar 

  • Yesbergenova Z, Yang G, Oron E, Soffer D, Fluhr R, Sagi M (2005) The plant Mo-hydroxylases aldehyde oxidase and xanthine dehydrogenase have distinct reactive oxygen species signatures and are induced by drought and abscisic acid. Plant J 42:862–876

    Article  CAS  PubMed  Google Scholar 

  • Yoshioka H, Numata N, Nakajima K, Katou S, Kawakita K, Rowland O, Jones JDG, Doke N (2003) Nicotiana benthamiana gp91(phox) homologs NbrbohA and NbrbohB participate in H2O2 accumulation and resistance to Phytophthora infestans. Plant Cell 15:706–718

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof. Poul Erik Jensen, University of Copenhagen and Prof. Toshiraru Hase, Institute for Protein Research, Osaka University for kindly gifting FNR1 antibody. This study was supported by the Japan Society for the Promotion of Science (JSPS) [Grant-in-Aid for a post-doctoral fellowship (P08413) to R.K.T.] and The Sumitomo Foundation to M.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masami Watanabe.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tewari, R.K., Satoh, M., Kado, S. et al. Overproduction of stromal ferredoxin:NADPH oxidoreductase in H2O2-accumulating Brassica napus leaf protoplasts. Plant Mol Biol 86, 627–639 (2014). https://doi.org/10.1007/s11103-014-0252-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-014-0252-3

Keywords

Navigation