Skip to main content
Log in

Gamma Irradiation of Active Self-Healing PLGA Microspheres for Efficient Aqueous Encapsulation of Vaccine Antigens

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To investigate the effect of γ-irradiation of poly(lactic-co-glycolic acid) (PLGA)/Al(OH)3/0 or 5 wt% diethyl phthalate (DEP) microspheres for active self-healing encapsulation of vaccine antigens.

Methods

Microspheres were irradiated with 60Co at 2.5 and 1.8 MRad and 0.37 and 0.20 MRad/h. Encapsulation of tetanus toxoid (TT) was achieved by mixing Al(OH)3-PLGA microspheres with TT solution at 10–38°C. Electron paramagnetic resonance (EPR) spectroscopy was used to examine free radical formation. Glass transition temperature (Tg) and molecular weight of PLGA was measured by differential scanning calorimetry and gel permeation chromatography, respectively. Loading and release of TT were examined by modified Bradford, amino acid analysis, and ELISA assays.

Results

EPR spectroscopy results indicated absence of free radicals in PLGA microspheres after γ-irradiation. Antigen-sorbing capacity, encapsulation efficiency, and Tg of the polymer were also not adversely affected. When DEP-loaded microspheres were irradiated at 0.2 MRad/h, some PLGA pores healed during irradiation and PLGA healing during encapsulation was suppressed. The molecular weight of PLGA was slightly reduced when DEP-loaded microspheres were irradiated at the same dose rate. At the 0.37 MRad/h dose rate, these trends were not observed and the full immunoreactivity of TT was preserved during encapsulation and 1-month release. Gamma irradiation slightly increased TT initial burst release. The small increase in total irradiation dose from 1.8 to 2.5 MRad had insignificant effect on the polymer and microspheres properties analyzed.

Conclusions

Gamma irradiation is a plausible approach to provide a terminally sterilized, self-healing encapsulation PLGA excipient for vaccine delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AAA:

amino acid analysis

Active SM:

active self-microencapsulating

Al(OH)3 :

aluminum hydroxide adjuvant

BSA:

bovine serum albumin

DEP:

diethyl phthalate

DSC:

differential scanning calorimetry

EDTA:

ethylenediaminetetraacetic acid

ELISA:

enzyme-linked immunosorbent assay

EPR:

electron paramagnetic resonance

FMOC:

9-fluoromethyl-chloroformate

GPC:

gel permeation chromatography

HCl:

hydrochloric acid

ISO:

international organization for standardization

M w :

weight-average molecular weight

OPA:

o-phthalaldehyde

PBB:

phosphate buffered saline + 0.5% bovine serum albumin + 0.05% Brij® 35

PBS:

phosphate buffered saline

PBST:

phosphate buffered saline + 0.02% Tween 80

PLGA:

poly(lactic-co-glycolic acid)

PNPP:

(p-nitrophenyl phosphate, disodium salt) liquid substrate

PTFE filter:

hydrophobic fluoropore filter

PVA:

poly(vinyl alcohol)

SEM:

scanning electron microscopy

Tg :

glass transition temperature

THF:

tetrahydrofuran

TT:

tetanus toxoid

REFERENCES

  1. Diwan M, Khar RK, Talwar GP. Tetanus toxoid loaded ‘preformed microspheres’ of cross-linked dextran. Vaccine. 2001;19(28–29):3853–9.

    Article  PubMed  CAS  Google Scholar 

  2. Jiang WL, Gupta RK, Deshpande MC, Schwendeman SP. Biodegradable poly(lactic-co-glycolic acid) microparticles for injectable delivery of vaccine antigens. Adv Drug Deliv Rev. 2005;57(3):391–410.

    Article  PubMed  CAS  Google Scholar 

  3. O’Hagan DT, Rappuoli R. Novel approaches to pediatric vaccine delivery. Adv Drug Deliv Rev. 2006;58(1):29–51.

    Article  PubMed  Google Scholar 

  4. Schwendeman SP, Tobio M, Joworowicz M, Alonso MJ, Langer R. New strategies for the microencapsulation of tetanus vaccine. J Microencapsul. 1998;15(3):299–318.

    Article  PubMed  CAS  Google Scholar 

  5. Kersten GFA, Donders D, Akkermans A, Beuvery EC. Single shot with tetanus toxoid in biodegradable microspheres protects mice despite acid-induced denaturation of the antigen. Vaccine. 1996;14(17–18):1627–32.

    Article  PubMed  CAS  Google Scholar 

  6. Alonso MJ, Gupta RK, Min C, Siber GR, Langer R. Biodegradable microspheres as controlled-release tetanus toxoid delivery systems. Vaccine. 1994;12(4):299–306.

    Article  PubMed  CAS  Google Scholar 

  7. Boehm G, Peyre M, Sesardic D, Huskisson RJ, Mawas F, Douglas A, et al. On technological and immunological benefits of multivalent single-injection microsphere vaccines. Pharm Res. 2002;19(9):1330–6.

    Article  PubMed  CAS  Google Scholar 

  8. Coombes AGA, Lavelle EC, Jenkins PG, Davis SS. Single dose, polymeric, microparticle based vaccines: the influence of formulation conditions on the magnitude and duration of the immune response to a protein antigen. Vaccine. 1996;14(15):1429–38.

    Article  PubMed  CAS  Google Scholar 

  9. Johansen P, Estevez F, Zurbriggen R, Merkle HP, Gluck R, Corradin G, et al. Towards clinical testing of a single-administration tetanus vaccine based on PLA/PLGA microspheres. Vaccine. 2000;19(9–10):1047–54.

    Article  PubMed  CAS  Google Scholar 

  10. Men Y, Thomasin C, Merkle HP, Gander B, Corradin G. A single administration of tetanus toxoid in biodegradable microspheres elicits T cell and antibody responses similar or superior to those obtained with aluminum hydroxide. Vaccine. 1995;13(7):683–9.

    Article  PubMed  CAS  Google Scholar 

  11. O’Hagan DT, Singh M, Gupta RK. Poly(lactide-co-glycolide) microparticles for the development of single-dose controlled-release vaccines. Adv Drug Deliv Rev. 1998;32(3):225–46.

    Article  PubMed  Google Scholar 

  12. Singh M, Li XM, Wang HY, McGee JP, Zamb T, Koff W, et al. Immunogenicity and protection in small-animal models with controlled-release tetanus toxoid microparticles as a single-dose vaccine. Infect Immun. 1997;65(5):1716–21.

    PubMed  CAS  Google Scholar 

  13. Tobio M, Nolley J, Guo YY, McIver J, Alonso MJ. A novel system based on a poloxamer PLGA blend as a tetanus toxoid delivery vehicle. Pharm Res. 1999;16(5):682–8.

    Article  PubMed  CAS  Google Scholar 

  14. Tobio M, Schwendeman SP, Guo Y, McIver J, Langer R, Alonso MJ. Improved immunogenicity of a core-coated tetanus toroid delivery system. Vaccine. 1999;18(7–8):618–22.

    Article  PubMed  CAS  Google Scholar 

  15. Esparza I, Kissel T. Parameters affecting the immunogenicity of microencapsulated tetanus toxoid. Vaccine. 1992;10(10):714–20.

    Article  PubMed  CAS  Google Scholar 

  16. Jiang W, Schwendeman SP. Stabilization of tetanus toxoid encapsulated in PLGA microspheres. Mol Pharm. 2008;5(5):808–17.

    Article  PubMed  CAS  Google Scholar 

  17. Sanchez A, Villamayor B, Guo YY, McIver J, Alonso MJ. Formulation strategies for the stabilization of tetanus toroid in poly(lactide-co-glycolide) microspheres. Int J Pharm. 1999;185(2):255–66.

    Article  PubMed  CAS  Google Scholar 

  18. Johansen P, Tamber H, Merkle HP, Gander B. Diphtheria and tetanus toroid microencapsulation into conventional and end-group alkylated PLA/PLGAs. Eur J Pharm Biopharm. 1999;47(3):193–201.

    Article  PubMed  CAS  Google Scholar 

  19. Alonso MJ, Cohen S, Park TG, Gupta RK, Siber GR, Langer R. Determinants of release rate of tetanus vaccine from polyester microspheres. Pharm Res. 1993;10(7):945–53.

    Article  PubMed  CAS  Google Scholar 

  20. Katare YK, Panda AK. Influences of excipients on in vitro release and in vivo performance of tetanus toxoid loaded polymer particles. Eur J Pharm Sci. 2006;28(3):179–88.

    Article  PubMed  CAS  Google Scholar 

  21. Sasiak AB, Bolgiano B, Crane DT, Hockley DJ, Corbel MJ, Sesardic D. Comparison of in vitro and in vivo methods to study stability of PLGA microencapsulated tetanus toxoid vaccines. Vaccine. 2000;19(7–8):694–705.

    Article  PubMed  CAS  Google Scholar 

  22. Reinhold SE, Desai KGH, Zhang L, Olsen KF, Schwendeman SP. Self-healing microencapsulation of biomacromolecules without organic solvents. Angew Chem Int Ed. 2012;51(43):10800–3.

    Article  CAS  Google Scholar 

  23. Buchanan F, Leonard D. Degradation rate of bioresorbable materials: Prediction and evaluation. Cambridge: Woodhead Publishing; 2008.

    Book  Google Scholar 

  24. Sintzel MB, Merkli A, Tabatabay C, Gurny R. Influence of irradiation sterilization on polymers used as drug carriers-A review. Drug Dev Ind Pharm. 1997;23(9):857–78.

    Article  CAS  Google Scholar 

  25. Carrascosa C, Espejo L, Torrado S, Torrado JJ. Effect of γ-sterilization process on PLGA microspheres loaded with insulin-like growth factor-I (IGF-I). J Biomater Appl. 2003;18(2):95–108.

    Article  PubMed  CAS  Google Scholar 

  26. Dorati R, Colonna C, Serra M, Genta I, Modena T, Pavanetto F, et al. Gamma-irradiation of PEGd, lPLA and PEG-PLGA multiblock copolymers: I. Effect of irradiation doses. AAPS PharmSciTech. 2008;9(2):718–25.

    Article  PubMed  CAS  Google Scholar 

  27. Igartua M, Hernandez RM, Eduardo Rosas J, Elkin Patarroyo M, Luis Pedraz J. γ-Irradiation effects on biopharmaceutical properties of PLGA microspheres loaded with SPf66 synthetic vaccine. Eur J Pharm Biopharm. 2008;69(2):519–26.

    Article  PubMed  CAS  Google Scholar 

  28. Mohanan D, Gander B, Kuendig TM, Johansen P. Encapsulation of antigen in poly(D, L-lactide-co-glycolide) microspheres protects from harmful effects of gamma-irradiation as assessed in mice. Eur J Pharm Biopharm. 2012;80(2):274–81.

    Article  PubMed  CAS  Google Scholar 

  29. Wuisman PIJM, Smit TH. Degradable polymers for skeletal implants. New York: Nova Science Publishers Inc.; 2009.

    Google Scholar 

  30. Dorati R, Colonna C, Tomasi C, Genta I, Modena T, Faucitano A, et al. Gamma-irradiation of PEGd, IPLA and PEG-PLGA multiblock copolymers: II. Effect of oxygen and EPR investigation. AAPS PharmSciTech. 2008;9(4):1110–8.

    Article  PubMed  CAS  Google Scholar 

  31. Dorati R, Genta I, Montanari L, Cilurzo F, Buttafava A, Faucitano A, et al. The effect of gamma-irradiation on PLGA/PEG microspheres containing ovalbumin. J Control Release. 2005;107(1):78–90.

    Article  PubMed  CAS  Google Scholar 

  32. Hsiao C-Y, Liu S-J, Ueng SW-N, Chan E-C. The influence of gamma irradiation and ethylene oxide treatment on the release characteristics of biodegradable poly(lactide-co-glycolide) composites. Polym Degrad Stabil. 2012;97(5):715–20.

    Article  CAS  Google Scholar 

  33. Bushell JA, Claybourn M, Williams HE, Murphy DM. An EPR and ENDOR study of gamma- and beta-radiation sterilization in poly(lactide-co-glycolide) polymers and microspheres. J Control Release. 2005;110(1):49–57.

    Article  PubMed  CAS  Google Scholar 

  34. Faisant N, Siepmann J, Oury P, Laffineur V, Bruna E, Haffner J, et al. The effect of gamma-irradiation on drug release from bioerodible microparticles: A quantitative treatment. Int J Pharm. 2002;242(1–2):281–4.

    Article  PubMed  CAS  Google Scholar 

  35. Faisant N, Siepmann J, Richard J, Benoit JP. Mathematical modeling of drug release from bioerodible microparticles: effect of gamma-irradiation. Eur J Pharm Biopharm. 2003;56(2):271–9.

    Article  PubMed  CAS  Google Scholar 

  36. Bittner B, Mader K, Kroll C, Borchert HH, Kissel T. Tetracycline-HCl-loaded poly(DL-lactide-co-glycolide) microspheres prepared by a spray drying technique: influence of gamma-irradiation on radical formation and polymer degradation. J Control Release. 1999;59(1):23–32.

    Article  PubMed  CAS  Google Scholar 

  37. Conti B, Dorati R, Colonna C, Genta I. Effects of ionizing radiation sterilization on microparticulate drug delivery systems based on poly-alpha-hydroxyacids: an overview. J Drug Deliv Sci Tech. 2009;19(2):99–112.

    CAS  Google Scholar 

  38. Yaman A. Alternative methods of terminal sterilization for biologically active macromolecules. Curr Opin Drug Discov Dev. 2001;4(6):760–3.

    CAS  Google Scholar 

  39. Hooper KA, Cox JD, Kohn J. Comparison of the effect of ethylene oxide and γ-irradiation on selected tyrosine-derived polycarbonates and poly(L-lactic acid). J Appl Polym Sci. 1997;63:1499–510.

    Article  CAS  Google Scholar 

  40. Desai KGH, Schwendeman SP. Active self-healing encapsulation of vaccine antigens in PLGA microspheres. J Control Release. 2013;165(1):62–74.

    Article  PubMed  CAS  Google Scholar 

  41. Chang AC, Gupta RK. Stabilization of tetanus toxoid in poly(DL-lactic-co-glycolic acid) microspheres for the controlled release of antigen. J Pharm Sci. 1996;85(2):129–32.

    Article  PubMed  CAS  Google Scholar 

  42. http://www.iso.org/iso/catalogue_detail.htm?csnumber=51238.

  43. Bernkopf M. Sterilisation of bioresorbable polymer implants. Med Device Technol. 2007;18:28–9.

    Google Scholar 

  44. Faucitano A, Buttafava A, Montanari L, Cilurzo F, Conti B, Genta I, et al. Radiation-induced free radical reactions in polymer/drug systems for controlled release: an EPR investigation. Radiat Phys Chem. 2003;67(1):61–72.

    Article  CAS  Google Scholar 

  45. Burrell LS, Lindblad EB, White JL, Hem SL. Stability of aluminium-containing adjuvants to autoclaving. Vaccine. 1999;17(20–21):2599–603.

    Article  PubMed  CAS  Google Scholar 

  46. Dandashli EA, Zhao QJ, Yitta S, Morefield GL, White JL, Hem SL. Effect of thermal treatment during the preparation of aluminum hydroxide adjuvant on the protein adsorption capacity during aging. Pharm Dev Technol. 2002;7(4):401–6.

    Article  PubMed  CAS  Google Scholar 

  47. Johnston CT, Wang SL, Hem SL. Measuring the surface area of aluminum hydroxide adjuvant. J Pharm Sci. 2002;91(7):1702–6.

    Article  PubMed  CAS  Google Scholar 

  48. Danmark S, Finne-Wistrand A, Schander K, Hakkarainen M, Arvidson K, Mustafa K, et al. In vitro and in vivo degradation profile of aliphatic polyesters subjected to electron beam sterilization. Acta Biomater. 2011;7(5):2035–46.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This study was funded by NIH R01 HL 68345 and R21 EB 08873. We greatly appreciate Mrs. Shobha Churi (Dept. of Pharmacy Practice, JSS University, Mysore, India) and Dr. Manjunatha (Registrar, JSS University, Mysore, India) for their help in receiving TT sample from Serum Institute of India. We thank Dr. Rajesh Gupta, FDA, for sending Equine tetanus antitoxin sample and helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven P. Schwendeman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desai, KG.H., Kadous, S. & Schwendeman, S.P. Gamma Irradiation of Active Self-Healing PLGA Microspheres for Efficient Aqueous Encapsulation of Vaccine Antigens. Pharm Res 30, 1768–1778 (2013). https://doi.org/10.1007/s11095-013-1019-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1019-2

KEY WORDS

Navigation