Skip to main content
Log in

Following the Concentration of Polymeric Nanoparticles During Nebulization

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Nebulization represents one strategy to achieve pulmonary deposition of biodegradable nanoparticles. Besides stability as a key requirement to maintain functionality, the output of nanoparticles from the nebulizer needs to be considered to facilitate an efficient pulmonary therapy.

Methods

Formulations nebulized by air-jet and vibrating-membrane technology were analyzed for their aerodynamic characteristics by laser diffraction. The nebulization stability of poly(D,L-lactide-co-glycolide) nanoparticles was assessed by dynamic light scattering. Moreover, several methods were employed to account for the shift in solute and NP reservoir concentration during nebulization.

Results

Regardless of the formulation or nebulizer used generated aerosols all showed aerodynamic characteristics suitable for deep lung deposition. However, nanoparticles were prone to aggregation and concentrated during air-jet nebulization. The particle concentration effect was significantly pronounced in comparison to molecular solutes under the same nebulization conditions, due to nanoparticle aggregation and subsequent particle remainder in the reservoir. In contrast, vibrating-membrane technology did not affect nanoparticle integrity and reservoir concentration during nebulization, as the unaffected submicron particles passed through the tapered holes of the actuated plate.

Conclusions

Aggregation and concentration effects during air-jet nebulization emphasize that nanosuspensions should preferably be delivered with a suitable vibrating-membrane device in order to ensure an effective pulmonary application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CF:

5(6)-carboxyfluorescein

DLS:

dynamic light scattering

DMSO:

dimethyl sulfoxide

FPF:

fine particle fraction

GSD:

geometric standard deviation

LDA:

laser Doppler anemometry

MWCO:

molecular weight cut-off

NP:

nanoparticles

PDI:

polydispersity index

PLGA:

poly(D,L-lactide-co-glycolide)

S.D.:

standard deviation

TEM:

transmission electron microscopy

THF:

tetrahydrofuran

UV/Vis:

ultra violet/visible

VMD:

volume median diameter

References

  1. Olschewski H, Simonneau G, Galie N, Higenbottam T, Naeije R, Rubin LJ, et al. Inhaled iloprost for severe pulmonary hypertension. N Engl J Med. 2002;347:322–9.

    Article  PubMed  CAS  Google Scholar 

  2. Patton JS, Byron PR. Inhaling medicines: Delivering drugs to the body through the lungs. Nat Rev Drug Discov. 2007;6:67–74.

    Article  PubMed  CAS  Google Scholar 

  3. van der Schans CP. Bronchial mucus transport. Respir Care. 2007;52:1150–8.

    PubMed  Google Scholar 

  4. Geiser M. Update on macrophage clearance of inhaled micro- and nanoparticles. J Aerosol Med. 2010;23:207–17.

    CAS  Google Scholar 

  5. Gessler T, Seeger W, Schmehl T. The potential for inhaled treprostinil in the treatment of pulmonary arterial hypertension. Ther Adv Respir Dis. 2011;5:195–206.

    Article  PubMed  CAS  Google Scholar 

  6. Beck-Broichsitter M, Gauss J, Packhaeuser CB, Lahnstein K, Schmehl T, Seeger W, et al. Pulmonary drug delivery with aerosolizable nanoparticles in an ex vivo lung model. Int J Pharm. 2009;367:169–78.

    Article  PubMed  CAS  Google Scholar 

  7. Beck-Broichsitter M, Gauss J, Gessler T, Seeger W, Kissel T, Schmehl T. Pulmonary targeting with biodegradable salbutamol-loaded nanoparticles. J Aerosol Med. 2010;23:47–57.

    CAS  Google Scholar 

  8. Nielsen EJB, Nielsen JM, Becker D, Karlas A, Prakash H, Glud SZ, et al. Pulmonary gene silencing in transgenic EGFP mice using aerosolised chitosan/siRNA nanoparticles. Pharm Res. 2010;27:2520–7.

    Article  PubMed  CAS  Google Scholar 

  9. Rytting E, Bur M, Cartier R, Bouyssou T, Wang X, Krueger M, et al. In vitro and in vivo performance of biocompatible negatively-charged salbutamol-loaded nanoparticles. J Controlled Release. 2010;141:101–7.

    Article  CAS  Google Scholar 

  10. Beck-Broichsitter M, Merkel OM, Kissel T. Controlled pulmonary drug and gene delivery using polymeric nano-carriers. J Controlled Release. 2011:doi:10.1016/j.jconrel.2011.1012.1004.

  11. Dolovich MB, Dhand R. Aerosol drug delivery: developments in device design and clinical use. Lancet. 2011;377:1032–45.

    Article  PubMed  CAS  Google Scholar 

  12. Steckel H, Eskandar F. Factors affecting aerosol performance during nebulization with jet and ultrasonic nebulizers. Eur J Pharm Sci. 2003;19:443–55.

    Article  PubMed  CAS  Google Scholar 

  13. Watts AB, McConville JT, Williams III RO. Current therapies and technological advances in aqueous aerosol drug delivery. Drug Dev Ind Pharm. 2008;34:913–22.

    Article  PubMed  CAS  Google Scholar 

  14. Lass JS, Sant A, Knoch M. New advances in aerosolised drug delivery: vibrating membrane nebuliser technology. Expert Opin Drug Delivery. 2006;3:693–702.

    Article  CAS  Google Scholar 

  15. Waldrep JC, Dhand R. Advanced nebulizer designs employing vibrating mesh/aperture plate technologies for aerosol generation. Curr Drug Delivery. 2008;5:114–9.

    Article  CAS  Google Scholar 

  16. Chow AHL, Tong HHY, Chattopadhyay P, Shekunov BY. Particle engineering for pulmonary drug delivery. Pharm Res. 2007;24:411–37.

    Article  PubMed  CAS  Google Scholar 

  17. Sung JC, Padilla DJ, Garcia-Contreras L, VerBerkmoes JL, Durbin D, Peloquin CA, et al. Formulation and pharmacokinetics of self-assembled rifampicin nanoparticle systems for pulmonary delivery. Pharm Res. 2009;26:1847–55.

    Article  PubMed  CAS  Google Scholar 

  18. Lebhardt T, Roesler S, Uusitalo HP, Kissel T. Surfactant-free redispersible nanoparticles in fast-dissolving composite microcarriers for dry-powder inhalation. Eur J Pharm Biopharm. 2011;78:90–6.

    Article  PubMed  CAS  Google Scholar 

  19. Beck-Broichsitter M, Schweiger C, Schmehl T, Gessler T, Seeger W, Kissel T. Characterization of novel spray-dried polymeric particles for controlled pulmonary drug delivery. J Controlled Release. 2012;158:329–35.

    Article  CAS  Google Scholar 

  20. Dailey LA, Kleemann E, Wittmar M, Gessler T, Schmehl T, Roberts C, et al. Surfactant-free, biodegradable nanoparticles for aerosol therapy based on the branched polyesters, DEAPA-PVAL-g-PLGA. Pharm Res. 2003;20:2011–20.

    Article  PubMed  CAS  Google Scholar 

  21. Dailey LA, Schmehl T, Gessler T, Wittmar M, Grimminger F, Seeger W, et al. Nebulization of biodegradable nanoparticles: Impact of nebulizer technology and nanoparticle characteristics on aerosol features. J Controlled Release. 2003;86:131–44.

    Article  CAS  Google Scholar 

  22. Packhäuser CB, Lahnstein K, Sitterberg J, Schmehl T, Gessler T, Bakowsky U, et al. Stabilization of aerosolizable nano-carriers by freeze-drying. Pharm Res. 2009;26:129–38.

    Article  Google Scholar 

  23. Beck-Broichsitter M, Kleimann P, Gessler T, Seeger W, Kissel T, Schmehl T. Nebulization performance of biodegradable sildenafil-loaded nanoparticles using the Aeroneb® Pro: Formulation aspects and nanoparticle stability to nebulization. Int J Pharm. 2012;422:398–408.

    Article  PubMed  CAS  Google Scholar 

  24. Hureaux J, Lagarce F, Gagnadoux F, Vecellio L, Clavreul A, Roger E, et al. Lipid nanocapsules: Ready-to-use nanovectors for the aerosol delivery of paclitaxel. Eur J Pharm Biopharm. 2009;73:239–46.

    Article  PubMed  CAS  Google Scholar 

  25. McCallion ONM, Taylor KMG, Thomas M, Taylor AJ. Nebulisation of monodisperse latex sphere suspensions in air-jet and ultrasonic nebulisers. Int J Pharm. 1996;133:203–14.

    Article  Google Scholar 

  26. Beck-Broichsitter M, Rytting E, Lebhardt T, Wang X, Kissel T. Preparation of nanoparticles by solvent displacement for drug delivery: A shift in the “ouzo region” upon drug loading. Eur J Pharm Sci. 2010;41:244–53.

    Article  PubMed  CAS  Google Scholar 

  27. Mitchell JP, Nagel MW, Nichols S, Nerbrink O. Laser diffractometry as a technique for the rapid assessment of aerosol particle size from inhalers. J Aerosol Med. 2006;19:409–33.

    Article  PubMed  CAS  Google Scholar 

  28. Hinds WC. Aerosol technology: properties, behavior, and measurements of airborne particles. New York: Wiley; 1998.

    Google Scholar 

  29. Beck-Broichsitter M, Thieme M, Nguyen J, Schmehl T, Gessler T, Seeger W, et al. Novel’nano in nano’ composites for sustained drug delivery: Biodegradable nanoparticles encapsulated into nanofiber non-wovens. Macromol Biosci. 2010;10:1527–35.

    Article  PubMed  CAS  Google Scholar 

  30. Groneberg DA, Witt C, Wagner U, Chung KF, Fischer A. Fundamentals of pulmonary drug delivery. Respir Med. 2003;97:382–7.

    Article  PubMed  CAS  Google Scholar 

  31. Carvalho TC, Peters JI, Williams III RO. Influence of particle size on regional lung deposition: what evidence is there? Int J Pharm. 2011;406:1–10.

    Article  PubMed  CAS  Google Scholar 

  32. Fink JB, Power J. Comparison of a novel aerosol generator with a standard ultrasonic nebulizer designed for use during mechanical ventilation (Abstract). Am J Respir Crit Care Med. 2001;163:A127.

    Google Scholar 

  33. LaVan DA, Lynn DM, Langer R. Moving smaller in drug discovery and delivery. Nat Rev Drug Discov. 2002;1:77–84.

    Article  PubMed  CAS  Google Scholar 

  34. Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano. 2009;3:16–20.

    Article  PubMed  CAS  Google Scholar 

  35. Couvreur P, Vauthier C. Nanotechnology: Intelligent design to treat complex disease. Pharm Res. 2006;23:1417–50.

    Article  PubMed  CAS  Google Scholar 

  36. Vauthier C, Bouchemal K. Methods for the preparation and manufacture of polymeric nanoparticles. Pharm Res. 2009;26:1025–58.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments AND DISCLOSURES

The authors would like to thank Michael Hellwig and Andreas K. Schaper (Department of Geosciences and Materials Science Center, University of Marburg) for their support with TEM. This study was supported by the German Research Foundation (DFG). We want to express our sincere thanks for this grant.

The authors disclose that no conflicting interests associated with the manuscript exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moritz Beck-Broichsitter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beck-Broichsitter, M., Knuedeler, MC., Schmehl, T. et al. Following the Concentration of Polymeric Nanoparticles During Nebulization. Pharm Res 30, 16–24 (2013). https://doi.org/10.1007/s11095-012-0819-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0819-0

Key words

Navigation