Skip to main content
Log in

Glucose, Lactate and Glutamine but not Glutamate Support Depolarization-Induced Increased Respiration in Isolated Nerve Terminals

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Synaptosomes prepared from various aged and gene modified experimental animals constitute a valuable model system to study pre-synaptic mechanisms. Synaptosomes were isolated from whole brain and the XFe96 extracellular flux analyzer (Seahorse Bioscience) was used to study mitochondrial respiration and glycolytic rate in presence of different substrates. Mitochondrial function was tested by sequentially exposure of the synaptosomes to the ATP synthase inhibitor, oligomycin, the uncoupler FCCP (carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone) and the electron transport chain inhibitors rotenone and antimycin A. The synaptosomes exhibited intense respiratory activity using glucose as substrate. The FCCP-dependent respiration was significantly higher with 10 mM glucose compared to 1 mM glucose. Synaptosomes also readily used pyruvate as substrate, which elevated basal respiration, activity-dependent respiration induced by veratridine and the respiratory response to uncoupling compared to that obtained with glucose as substrate. Also lactate was used as substrate by synaptosomes but in contrast to pyruvate, mitochondrial lactate mediated respiration was comparable to respiration using glucose as substrate. Synaptosomal respiration using glutamate and glutamine as substrates was significantly higher compared to basal respiration, whereas oligomycin-dependent and FCCP-induced respiration was lower compared to the responses obtained in the presence of glucose as substrate. We provide evidence that synaptosomes are able to use besides glucose and pyruvate also the substrates lactate, glutamate and glutamine to support their basal respiration. Veratridine was found to increase respiration supported by glucose, pyruvate, lactate and glutamine and FCCP was found to increase respiration supported by glucose, pyruvate and lactate. This was not the case when glutamate was the only energy substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sato N, Morishita R (2015) The roles of lipid and glucose metabolism in modulation of beta-amyloid, tau, and neurodegeneration in the pathogenesis of Alzheimer disease. Front Aging Neurosci 7:199

    Article  PubMed  PubMed Central  Google Scholar 

  2. Cunnane S, Nugent S, Roy M, Courchesne-Loyer A, Croteau E, Tremblay S, Castellano A, Pifferi F, Bocti C, Paquet N, Begdouri H, Bentourkia M, Turcotte E, Allard M, Barberger-Gateau P, Fulop T, Rapoport SI (2011) Brain fuel metabolism, aging, and Alzheimer’s disease. Nutrition 27(1):3–20

    Article  CAS  PubMed  Google Scholar 

  3. Nicholls DG (2003) Bioenergetics and transmitter release in the isolated nerve terminal. Neurochem Res 28(10):1433–1441

    Article  CAS  PubMed  Google Scholar 

  4. Nicholls DG, Brand MD, Gerencser AA (2015) Mitochondrial bioenergetics and neuronal survival modelled in primary neuronal culture and isolated nerve terminals. J Bioenerg Biomembr 47(1–2):63–74

    Article  CAS  PubMed  Google Scholar 

  5. Choi SW, Gerencser AA, Nicholls DG (2009) Bioenergetic analysis of isolated cerebrocortical nerve terminals on a microgram scale: spare respiratory capacity and stochastic mitochondrial failure. J Neurochem 109(4):1179–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Johnson JL, Roberts E (1984) Proline, glutamate and glutamine metabolism in mouse brain synaptosomes. Brain Res 323(2):247–256

    Article  CAS  PubMed  Google Scholar 

  7. McKenna MC, Tildon JT, Stevenson JH, Hopkins IB (1994) Energy metabolism in cortical synaptic terminals from weanling and mature rat brain: evidence for multiple compartments of tricarboxylic acid cycle activity. Dev Neurosci 16(5–6):291–300

    Article  CAS  PubMed  Google Scholar 

  8. Erecinska M, Nelson D, Deas J, Silver IA (1996) Limitation of glycolysis by hexokinase in rat brain synaptosomes during intense ion pumping. Brain Res 726(1–2):153–159

    Article  CAS  PubMed  Google Scholar 

  9. Nunez-Figueredo Y, Pardo-Andreu GL, Ramirez-Sanchez J, Delgado-Hernandez R, Ochoa-Rodriguez E, Verdecia-Reyes Y, Naal Z, Muller AP, Portela LV, Souza DO (2014) Antioxidant effects of JM-20 on rat brain mitochondria and synaptosomes: mitoprotection against Ca2+-induced mitochondrial impairment. Brain Res Bull 109:68–76

    Article  CAS  PubMed  Google Scholar 

  10. Rowley S, Liang LP, Fulton R, Shimizu T, Day B, Patel M (2015) Mitochondrial respiration deficits driven by reactive oxygen species in experimental temporal lobe epilepsy. Neurobiol Dis 75:151–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yudkoff M, Zaleska MM, Nissim I, Nelson D, Erecinska M (1989) Neuronal glutamine utilization: pathways of nitrogen transfer studied with [15N]glutamine. J Neurochem 53(2):632–640

    Article  CAS  PubMed  Google Scholar 

  12. Flynn JM, Choi SW, Day NU, Gerencser AA, Hubbard A, Melov S (2011) Impaired spare respiratory capacity in cortical synaptosomes from Sod2 null mice. Free Radic Biol Med 50(7):866–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Choi SW, Gerencser AA, Lee DW, Rajagopalan S, Nicholls DG, Andersen JK, Brand MD (2011) Intrinsic bioenergetic properties and stress sensitivity of dopaminergic synaptosomes. J Neurosci 31(12):4524–4534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McKenna MC, Tildon JT, Stevenson JH, Hopkins IB, Huang X, Couto R (1998) Lactate transport by cortical synaptosomes from adult rat brain: characterization of kinetics and inhibitor specificity. Dev Neurosci 20(4–5):300–309

    Article  CAS  PubMed  Google Scholar 

  15. McKenna MC (2013) Glutamate pays its own way in astrocytes. Front Endocrinol (Lausanne) 4:191

    Google Scholar 

  16. McKenna MC (2012) Substrate competition studies demonstrate oxidative metabolism of glucose, glutamate, glutamine, lactate and 3-hydroxybutyrate in cortical astrocytes from rat brain. Neurochem Res 37(11):2613–2626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hertz L, Hertz E (2003) Cataplerotic TCA cycle flux determined as glutamate-sustained oxygen consumption in primary cultures of astrocytes. Neurochem Int 43(4–5):355–361

    Article  CAS  PubMed  Google Scholar 

  18. Sonnewald U, Westergaard N, Petersen SB, Unsgard G, Schousboe A (1993) Metabolism of [U-13C]glutamate in astrocytes studied by 13C NMR spectroscopy: incorporation of more label into lactate than into glutamine demonstrates the importance of the tricarboxylic acid cycle. J Neurochem 61(3):1179–1182

    Article  CAS  PubMed  Google Scholar 

  19. Petr GT, Sun Y, Frederick NM, Zhou Y, Dhamne SC, Hameed MQ, Miranda C, Bedoya EA, Fischer KD, Armsen W, Wang J, Danbolt NC, Rotenberg A, Aoki CJ, Rosenberg PA (2015) Conditional deletion of the glutamate transporter GLT-1 reveals that astrocytic GLT-1 protects against fatal epilepsy while neuronal GLT-1 contributes significantly to glutamate uptake into synaptosomes. J Neurosci 35(13):5187–5201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Robinson MB (1998) Examination of glutamate transporter heterogeneity using synaptosomal preparations. Methods Enzymol 296:189–202

    Article  CAS  PubMed  Google Scholar 

  21. Walls AB, Waagepetersen HS, Bak LK, Schousboe A, Sonnewald U (2015) The glutamine-glutamate/GABA cycle: function, regional differences in glutamate and GABA production and effects of interference with GABA metabolism. Neurochem Res 40(2):402–409

    Article  CAS  PubMed  Google Scholar 

  22. McKenna MC (2007) The glutamate-glutamine cycle is not stoichiometric: fates of glutamate in brain. J Neurosci Res 85(15):3347–3358

    Article  CAS  PubMed  Google Scholar 

  23. Olstad E, Qu H, Sonnewald U (2007) Glutamate is preferred over glutamine for intermediary metabolism in cultured cerebellar neurons. J Cereb Blood Flow Metab 27(4):811–820

    Article  CAS  PubMed  Google Scholar 

  24. Dunkley PR, Jarvie PE, Robinson PJ (2008) A rapid Percoll gradient procedure for preparation of synaptosomes. Nat Protoc 3(11):1718–1728

    Article  CAS  PubMed  Google Scholar 

  25. Nicholls DG, Scott ID (1980) The regulation of brain mitochondrial calcium-ion transport. The role of ATP in the discrimination between kinetic and membrane-potential-dependent calcium-ion efflux mechanisms. Biochem J 186(3):833–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Erecinska M, Nelson D (1994) Effects of 3-nitropropionic acid on synaptosomal energy and transmitter metabolism: relevance to neurodegenerative brain diseases. J Neurochem 63(3):1033–1041

    Article  CAS  PubMed  Google Scholar 

  27. Brand MD, Nicholls DG (2011) Assessing mitochondrial dysfunction in cells. Biochem J 435(2):297–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Silver IA, Erecinska M (1994) Extracellular glucose concentration in mammalian brain: continuous monitoring of changes during increased neuronal activity and upon limitation in oxygen supply in normo-, hypo-, and hyperglycemic animals. J Neurosci 14(8):5068–5076

    CAS  PubMed  Google Scholar 

  29. Llorente-Folch I, Rueda CB, Amigo I, del Arco A, Saheki T, Pardo B, Satrustegui J (2013) Calcium-regulation of mitochondrial respiration maintains ATP homeostasis and requires ARALAR/AGC1-malate aspartate shuttle in intact cortical neurons. J Neurosci 33(35):13957–13971

    Article  CAS  PubMed  Google Scholar 

  30. McKenna MC, Waagepetersen HS, Schousboe A, Sonnewald U (2006) Neuronal and astrocytic shuttle mechanisms for cytosolic-mitochondrial transfer of reducing equivalents: current evidence and pharmacological tools. Biochem Pharmacol 71(4):399–407

    Article  CAS  PubMed  Google Scholar 

  31. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65(1):1–105

    Article  CAS  PubMed  Google Scholar 

  32. Bak LK, Schousboe A, Waagepetersen HS (2006) The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J Neurochem 98(3):641–653

    Article  CAS  PubMed  Google Scholar 

  33. Satrustegui J, Contreras L, Ramos M, Marmol P, del Arco A, Saheki T, Pardo B (2007) Role of aralar, the mitochondrial transporter of aspartate-glutamate, in brain N-acetylaspartate formation and Ca2+ signaling in neuronal mitochondria. J Neurosci Res 85(15):3359–3366

    Article  CAS  PubMed  Google Scholar 

  34. Bak LK, Zieminska E, Waagepetersen HS, Schousboe A, Albrecht J (2008) Metabolism of [U-13C]glutamine and [U-13C]glutamate in isolated rat brain mitochondria suggests functional phosphate-activated glutaminase activity in matrix. Neurochem Res 33(2):273–278

    Article  CAS  PubMed  Google Scholar 

  35. Mookerjee SA, Goncalves RL, Gerencser AA, Nicholls DG, Brand MD (2015) The contributions of respiration and glycolysis to extracellular acid production. Biochim Biophys Acta 1847(2):171–181

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Michaela C. Hohnholt would like to thank the “Deutsche Forschungsförderung (DFG)” for financial support (HO 5204/2-1). Helle S. Waagepetersen thanks the Carlsberg Foundation for financial support (Grant Number 108559100). The authors are grateful to Prof. Brian M. Polster for helpful discussions during the experimental study. We thank Prof. Arne Schousboe for critically reading the manuscript and many helpful suggestions. Gert H. Hansen and Lise-Lotte Niels-Christiansen are kindly acknowledged for providing the electron micrographs of synaptosomes.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michaela C. Hohnholt or Helle S. Waagepetersen.

Ethics declarations

Conflict of Interest

The authors have no conflict of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hohnholt, M.C., Andersen, V.H., Bak, L.K. et al. Glucose, Lactate and Glutamine but not Glutamate Support Depolarization-Induced Increased Respiration in Isolated Nerve Terminals. Neurochem Res 42, 191–201 (2017). https://doi.org/10.1007/s11064-016-2036-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-2036-4

Keywords

Navigation