Skip to main content

Advertisement

Log in

Curcumin Monoglucoside Shows Improved Bioavailability and Mitigates Rotenone Induced Neurotoxicity in Cell and Drosophila Models of Parkinson’s Disease

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Curcumin (CUR), a dietary polyphenol has diverse pharmacologic effects, but is limited by poor bioavailability. This is probably due to decreased solubility, cellular uptake and stability. In order to enhance its solubility and bioavailability, we synthesized the CUR bioconjugate curcumin monoglucoside (CMG) and tested its bioavailability, neuroprotective and anti-apoptotic propensity against rotenone (ROT) induced toxicity in N27 dopaminergic neuronal cells and Drosophila models. Our results elucidate that CMG showed improved bioavailability than CUR in N27 cells. Pre-treatment with CMG protected against ROT neurotoxicity and exerted antioxidant effects by replenishing cellular glutathione levels and significantly decreasing reactive species. CMG pre-treatment also restored mitochondrial complex I and IV activities inhibited by ROT. ROT-induced nuclear damage was also restored by CMG as confirmed by comet assay. CMG induced anti-apoptotic effects was substantiated by decreased phosporylation of JNK3 and c-jun, which in turn decreased the cleavage of pro-caspase 3. Q-PCR analysis of redox genes showed up-regulation of NOS2 and down-regulation of NQO1 upon ROT exposure and this was attenuated by CMG pre-treatment. Studies in the Drosophila ROT model revealed that, CMG administration showed better survival rate and locomotor activity, improved antioxidant activity and dopamine content than ROT treated group and was comparable with the CUR group. Based on these data, we surmise that CMG has improved bioavailability and offered neuroprotection comparable with CUR, against ROT-induced toxicity both in dopaminergic neuronal cell line and Drosophila models, with therapeutic implications for PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CMG:

Curcumin monoglucoside

ROS:

Reactive oxygen species

GSH:

Glutathione (reduced)

CI:

Mitochondrial complex I

CIV:

Mitochondrial complex IV

PD:

Parkinson’s disease

JNK:

c-Jun N-terminal kinase.

References

  1. Mercado G, Valdes P, Hetz C (2013) An ERcentric view of Parkinson’s disease. Trends Mol Med 19:165–175

    Article  CAS  PubMed  Google Scholar 

  2. Anand P, Thomas SG, Kunnumakkara AB et al (2008) Biological activities of curcumin and its analogues (Congeners) made by man and mother nature. Biochem Pharmacol 76:1590–1611

    Article  CAS  PubMed  Google Scholar 

  3. Shishodia S, Misra K, Aggarwal B (2008) Turmeric as cure-cumin: promises, problems, and solutions. In: Dietary modulation of cell signaling pathways. Taylor & Francis, Inc., p 91

  4. Lim GP, Chu T, Yang F et al (2001) The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci 21:8370–8377

    CAS  PubMed  Google Scholar 

  5. Thiyagarajan M, Sharma SS (2004) Neuroprotective effect of curcumin in middle cerebral artery occlusion induced focal cerebral ischemia in rats. Life Sci 74:969–985

    Article  CAS  PubMed  Google Scholar 

  6. Yang F, Lim GP, Begum AN et al (2005) Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 280:5892–5901

    Article  CAS  PubMed  Google Scholar 

  7. Grundman M, Grundman M, Delaney P (2002) Antioxidant strategies for Alzheimer’s disease. Proc Nutr Soc 61:191–202

    Article  CAS  PubMed  Google Scholar 

  8. Ringman JM, Frautschy SA, Cole GM et al (2005) A potential role of the curry spice curcumin in Alzheimer’s disease. Curr Alzheimer Res 2:131–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Singh D, Gupta M, Kesharwani R et al (2014) Molecular drug targets and therapies for Alzheimer’s disease. Transl Neurosci 5:203–217

    Article  Google Scholar 

  10. Kim SJ, Son TG, Park HR et al (2008) Curcumin stimulates proliferation of embryonic neural progenitor cells and neurogenesis in the adult hippocampus. J Biol Chem 283:14497–14505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Priyadarsini KI, Maity DK, Naik GH et al (2003) Role of phenolic O–H and methylene hydrogen on the free radical reactions and antioxidant activity of curcumin. Free Radical Biol Med 35:475–484

    Article  CAS  Google Scholar 

  12. Xu Y, Ku B, Cui L et al (2007) Curcumin reverses impaired hippocampal neurogenesis and increases serotonin receptor 1 A mRNA and brain-derived neurotrophic factor expression in chronically stressed rats. Brain Res 1162:9–18

    Article  CAS  PubMed  Google Scholar 

  13. Mythri RB, Bharath MM (2012) Curcumin: a potential neuroprotective agent in Parkinson’s disease. Curr Pharm Des 18:91–99

    Article  CAS  PubMed  Google Scholar 

  14. Mythri RB, Harish G, Dubey SK et al (2011) Glutamoyl diester of the dietary polyphenol curcumin offers improved protection against peroxynitrite-mediated nitrosative stress and damage of brain mitochondria in vitro: implications for Parkinson’s disease. Mol Cell Biochem 347:135–143

    Article  CAS  PubMed  Google Scholar 

  15. Sharma RA, Gescher AJ, Steward WP (2005) Curcumin: the story so far. Eur J Cancer 41:1955–1968

    Article  CAS  PubMed  Google Scholar 

  16. Garcea G, Jones DJ, Singh R et al (2004) Detection of curcumin and its metabolites in hepatic tissue and portal blood of patients following oral administration. Br J Cancer 90:1011–1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pan MH, Huang, Lin JK (1999) Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Metab Dispos 27:486–494

    CAS  PubMed  Google Scholar 

  18. Anand P, Kunnumakkara AB, Newman RA et al (2007) Bioavailability of curcumin: problems and promises. Mol Pharm 4:807–818

    Article  CAS  PubMed  Google Scholar 

  19. Gupta NK, Dixit VK (2011) Development and evaluation of vesicular system for curcumin delivery. Arch Dermatol Res 303:89–101

    Article  CAS  PubMed  Google Scholar 

  20. Gupta NK, Dixit VK (2011) Bioavailability enhancement of curcumin by complexation with phosphatidyl choline. J Pharm Sci 100:1987–1995

    Article  CAS  PubMed  Google Scholar 

  21. Li C, Zhang Y, Su T et al (2012) Silica-coated flexible liposomes as a nanohybrid delivery system for enhanced oral bioavailability of curcumin. Int J Nanomedicine 7:5995–6002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li H, Zhang N, Hao Y et al (2014) Formulation of curcumin delivery with functionalized single-walled carbon nanotubes: characteristics and anticancer effects in vitro. Drug Deliv 21:379–387

    Article  CAS  PubMed  Google Scholar 

  23. Ray B, Bisht S, Maitra A et al (2011) Neuroprotective and neurorescue effects of a novel polymeric nanoparticle formulation of curcumin (NanoCurc) in the neuronal cell culture and animal model: implications for Alzheimer’s disease. J Alzheimers Dis 23:61–77

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Bisht S, Feldmann G, Soni S et al (2007) Polymeric nanoparticle-encapsulated curcumin (“nanocurcumin”): a novel strategy for human cancer therapy. J Nanobiotechnol 5:3

    Article  Google Scholar 

  25. Tiyaboonchai W, Tungpradit W, Plianbangchang P (2007) Formulation and characterization of curcuminoids loaded solid lipid nanoparticles. Int J Pharm 337:299–306

    Article  CAS  PubMed  Google Scholar 

  26. Iwunze MO, McEwan D (2004) Peroxynitrite interaction with curcumin solubilized in ethanolic solution. Cell Mol Biol (Noisy-le-grand) 50: 749–752

    CAS  Google Scholar 

  27. Leung MH, Colangelo H, Kee TW (2008) Encapsulation of curcumin in cationic micelles suppresses alkaline hydrolysis. Langmuir 24:5672–5675

    Article  CAS  PubMed  Google Scholar 

  28. Wang F, Wu X, Wang F et al (2006) The sensitive fluorimetric method for the determination of curcumin using the enhancement of mixed micelle. J Fluoresc 16:53–59

    Article  PubMed  Google Scholar 

  29. Ma Z, Haddadi A, Molavi O et al (2008) Micelles of poly(ethylene oxide)-b-poly(epsilon-caprolactone) as vehicles for the solubilization, stabilization, and controlled delivery of curcumin. J Biomed Mater Res A 86:300–310

    Article  PubMed  Google Scholar 

  30. Sahu A, Bora U, Kasoju N et al (2008) Synthesis of novel biodegradable and self-assembling methoxy poly(ethylene glycol)-palmitate nanocarrier for curcumin delivery to cancer cells. Acta Biomater 4:1752–1761

    Article  CAS  PubMed  Google Scholar 

  31. Liu A, Lou H, Zhao L et al (2006) Validated LC/MS/MS assay for curcumin and tetrahydrocurcumin in rat plasma and application to pharmacokinetic study of phospholipid complex of curcumin. J Pharm Biomed Anal 40:720–727

    Article  CAS  PubMed  Google Scholar 

  32. Bishnoi M, Chopra K, Rongzhu L et al (2011) Protective effect of curcumin and its combination with piperine (bioavailability enhancer) against haloperidol-associated neurotoxicity: cellular and neurochemical evidence. Neurotox Res 20:215–225

    Article  CAS  PubMed  Google Scholar 

  33. Suresh D, Srinivasan K (2010) Tissue distribution and elimination of capsaicin, piperine and curcumin following oral intake in rats. Indian J Med Res 131:682–691

    CAS  PubMed  Google Scholar 

  34. Harish G, Venkateshappa C, Mythri RB et al (2010) Bioconjugates of curcumin display improved protection against glutathione depletion mediated oxidative stress in a dopaminergic neuronal cell line: implications for Parkinson’s disease. Bioorg Med Chem 18:2631–2638

    Article  CAS  PubMed  Google Scholar 

  35. Furniss BS (1989) Vogel’s textbook of practical organic chemistry. (Pearson Education India), 5th edn. Longman Ltd., Harlow, p 654

    Google Scholar 

  36. Mohammed AI, Jwad RS (2011) J Kerbala Univ 9:68687

    Google Scholar 

  37. Joshi VY, Sawant MR (2006) A convenient stereoselective synthesis of beta-d-glucopyranosides. Indian J Chem 45:461–465

    Google Scholar 

  38. Mohri K, Watanabe Y, Yoshida Y et al (2003) Synthesis of glycosylcurcuminoids. Chem Pharm Bull (Tokyo) 51:1268–1272

    Article  CAS  Google Scholar 

  39. Hergenhahn M, Bertram B, Wiessler M et al (2003) Curcumin derivatives with improved water solubility compared to curcumin and medicaments containing the same. US Patent Application No. 10/312,951

  40. Vali S, Mythri RB, Jagatha B et al (2007) Integrating glutathione metabolism and mitochondrial dysfunction with implications for Parkinson’s disease: a dynamic model. Neuroscience 149:917–930

    Article  CAS  PubMed  Google Scholar 

  41. Wroblewski F, Ladue JS (1955) Lactic dehydrogenase activity in blood. Proc Soc Exp Biol Med 90:210–213

    Article  CAS  PubMed  Google Scholar 

  42. Asai A, Miyazawa T (2000) Occurrence of orally administered curcuminoid as glucuronide and glucuronide/sulfate conjugates in rat plasma. Life Sci 67:2785–2793

    Article  CAS  PubMed  Google Scholar 

  43. Ramadasan-Nair R, Gayathri N, Mishra S et al (2014) Mitochondrial alterations and oxidative stress in an acute transient mouse model of muscle degeneration: implications for muscular dystrophy and related muscle pathologies. J Biol Chem 289:485–509

    Article  CAS  PubMed  Google Scholar 

  44. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxidation in animal tissues by thiobarbituric acid reaction. Anal BioChemistry 95:351–358

    Article  CAS  Google Scholar 

  45. Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    Article  CAS  PubMed  Google Scholar 

  46. Butterfield DA, Stadtman ER (1997) Protein oxidation processes in aging brain. Adv Cell Aging Gerontol 2:161–191

    Article  CAS  Google Scholar 

  47. Mythri RB, Jagatha B, Pradhan N et al (2007) Mitochondrial complex I inhibition in Parkinson’s disease: how can curcumin protect mitochondria? Antioxid Redox Signal 9:399–408

    Article  CAS  PubMed  Google Scholar 

  48. Tietze F (1969) Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem 27:502–522

    Article  CAS  PubMed  Google Scholar 

  49. Singh NP, McCoy MT, Tice RR et al (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    Article  CAS  PubMed  Google Scholar 

  50. Trounce IA, Kim YL, Jun AS et al (1996) Assessment of mitochondrial oxidative phosphorylation in patient muscle biopsies, lymphoblasts, and transmitochondrial cell lines. Methods Enzymol 264:484–509

    Article  CAS  PubMed  Google Scholar 

  51. Pandareesh MD, Anand T (2013) Neuromodulatory propensity of Bacopa monniera against scopolamine-induced cytotoxicity in PC12 cells via down-regulation of AChE and up-regulation of BDNF and muscarnic-1 receptor expression. Cell Mol Neurobiol 33:875–884

    Article  CAS  PubMed  Google Scholar 

  52. Pandareesh MD, Anand T (2014) Neuroprotective and anti-apoptotic propensity of Bacopa monniera extract against sodium nitroprusside induced activation of iNOS, heat shock proteins and apoptotic markers in PC12 cells. Neurochem Res 39:800–814

    Article  CAS  PubMed  Google Scholar 

  53. Hosamani R, Muralidhara (2009) Neuroprotective efficacy of Bacopa monnieri against rotenone induced oxidative stress and neurotoxicity in Drosophila melanogaster. Neurotoxicology 30:977–985

    Article  CAS  PubMed  Google Scholar 

  54. Feany MB, Bender WW (2000) A Drosophila model of Parkinson’s disease. Nature 404:394–398

    Article  CAS  PubMed  Google Scholar 

  55. Linhart R, Wong SA, Cao J et al (2014) Vacuolar protein sorting 35 (Vps35) rescues locomotor deficits and shortened lifespan in Drosophila expressing a Parkinson’s disease mutant of Leucine-Rich Repeat Kinase 2 (LRRK2). Mol Neurodegener 9:23

    Article  PubMed  PubMed Central  Google Scholar 

  56. Luo D, Zhang Q, Wang H et al (2009) Fucoidan protects against dopaminergic neuron death in vivo and in vitro. Eur J Pharmacol 617:33–40

    Article  CAS  PubMed  Google Scholar 

  57. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  58. Bollimpelli VS, Kumar P, Kumari S et al (2016) Neuroprotective effect of curcumin-loaded lactoferrin nano particles against rotenone induced neurotoxicity. Neurochem Int 95:37–45

    Article  CAS  PubMed  Google Scholar 

  59. Madathil KS, Karuppagounder SS, Haobam R et al (2013) Nitric oxide synthase inhibitors protect against rotenone-induced, oxidative stress mediated parkinsonism in rats. Neurochem Int 62:674–683

    Article  CAS  PubMed  Google Scholar 

  60. Dinkova-Kostova AT, Talalay P (2010) NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1), a multifunctional antioxidant enzyme and exceptionally versatile cytoprotector. Arch Biochem Biophys 501:116–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ross D, Siegel D (2004) NAD(P)H:quinone oxidoreductase 1 (NQO1, DT-diaphorase), functions and pharmacogenetics. Methods Enzymol 382:115–144

    Article  CAS  PubMed  Google Scholar 

  62. Martinez TN, Greenamyre JT (2012) Toxin models of mitochondrial dysfunction in Parkinson’s disease. Antioxid Redox Signal 16:920–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Vassallo N (2008) Polyphenols and health: new and recent advances. Nova Publishers, New York

    Google Scholar 

  64. Prasad S, Tyagi AK, Aggarwal BB (2014) Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Res Treat 46:2–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sharma RA, Steward WP, Gescher AJ (2007) Pharmacokinetics and pharmacodynamics of curcumin. In: The molecular targets and therapeutic uses of curcumin in health and disease, pp 453–470

  66. Gadad BS, Subramanya PK, Pullabhatla S et al (2012) Curcumin-glucoside, a novel synthetic derivative of curcumin, inhibits alpha-synuclein oligomer formation: relevance to Parkinson’s disease. Curr Pharm Des 18:76–84

    Article  CAS  PubMed  Google Scholar 

  67. Mishra S, Narain U, Mishra R et al (2005) Design, development and synthesis of mixed bioconjugates of piperic acid-glycine, curcumin-glycine/alanine and curcumin-glycine-piperic acid and their antibacterial and antifungal properties. Bioorg Med Chem 13:1477–1486

    Article  CAS  PubMed  Google Scholar 

  68. Liang C, Zhang Y, Jia Y et al (2016) Engineering a carbohydrate-processing transglycosidase into glycosyltransferase for natural product glycodiversification. Sci Rep 6:21051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nataraj J, Manivasagam T, Justin Thenmozhi A et al (2016) Neuroprotective effect of asiatic acid on rotenone-induced mitochondrial dysfunction and oxidative stress-mediated apoptosis in differentiated SH-SYS5Y cells. Nutr Neurosci 9:1–9

    Article  Google Scholar 

  70. Sala G, Marinig D, Riva C et al (2016) Rotenone down-regulates HSPA8/hsc70 chaperone protein in vitro: A new possible toxic mechanism contributing to Parkinson’s disease. Neurotoxicology 54:161–169

    Article  CAS  PubMed  Google Scholar 

  71. Zhang Q, Chen S, Yu S et al (2016) Neuroprotective effects of pyrroloquinoline quinone against rotenone injury in primary cultured midbrain neurons and in a rat model of Parkinson’s disease. Neuropharmacology 108:238–251

    Article  CAS  PubMed  Google Scholar 

  72. Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jagatha B, Mythri RB, Vali S et al (2008) Curcumin treatment alleviates the effects of glutathione depletion in vitro and in vivo: therapeutic implications for Parkinson’s disease explained via in silico studies. Free Radical Biol Med 44:907–917

    Article  CAS  Google Scholar 

  74. Li N, Ragheb K, Lawler G et al (2003) Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J Biol Chem 278:8516–8525

    Article  CAS  PubMed  Google Scholar 

  75. Kelso GF, Porteous CM, Coulter CV et al (2001) Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties. J Biol Chem 276:4588–4596

    Article  CAS  PubMed  Google Scholar 

  76. Yu S, Zheng W, Xin N et al (2010) Curcumin prevents dopaminergic neuronal death through inhibition of the c-Jun N-terminal kinase pathway. Rejuvenation Res 13:55–64

    Article  CAS  PubMed  Google Scholar 

  77. Chen YR, Tan TH (1998) Inhibition of the c-Jun N-terminal kinase (JNK) signaling pathway by curcumin. Oncogene 17:173–178

    Article  CAS  PubMed  Google Scholar 

  78. Schaeffer HJ, Weber MJ (1999) Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol Cell Biol 19:2435–2444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Dinkova-Kostova AT, Talalay P (2000) Persuasive evidence that quinone reductase type 1 (DT diaphorase) protects cells against the toxicity of electrophiles and reactive forms of oxygen. Free Radical Biol Med 29:231–240

    Article  CAS  Google Scholar 

  80. Radjendirane V, Joseph P, Lee YH et al (1998) Disruption of the DT diaphorase (NQO1) gene in mice leads to increased menadione toxicity. J Biol Chem 273:7382–7389

    Article  CAS  PubMed  Google Scholar 

  81. Asher G, Tsvetkov P, Kahana C et al (2005) A mechanism of ubiquitin-independent proteasomal degradation of the tumor suppressors p53 and p73. Genes dev 19:316–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tsvetkov P, Asher G, Reiss V et al (2005) Inhibition of NAD(P)H:quinone oxidoreductase 1 activity and induction of p53 degradation by the natural phenolic compound curcumin. Proc Natl Acad Sci USA 102:5535–5540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gaikwad A, Long DJ 2nd, Stringer JL et al (2001) In vivo role of NAD(P)H:quinone oxidoreductase 1 (NQO1) in the regulation of intracellular redox state and accumulation of abdominal adipose tissue. J Biol Chem 276:22559–22564

    Article  CAS  PubMed  Google Scholar 

  84. Tsvetkov P, Adamovich Y, Elliott E et al (2011) E3 ligase STUB1/CHIP regulates NAD(P)H:quinone oxidoreductase 1 (NQO1) accumulation in aged brain, a process impaired in certain Alzheimer disease patients. J Biol Chem 286:8839–8845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lee SC, Zhao ML, Hirano A et al (1999) Inducible nitric oxide synthase immunoreactivity in the Alzheimer disease hippocampus: association with Hirano bodies, neurofibrillary tangles, and senile plaques. J Neuropathol Exp Neurol 58:1163–1169

    Article  CAS  PubMed  Google Scholar 

  86. Luth HJ, Munch G, Arendt T (2002) Aberrant expression of NOS isoforms in Alzheimer’s disease is structurally related to nitrotyrosine formation. Brain Res 953:135–143

    Article  PubMed  Google Scholar 

  87. Iadecola C, Alexander M (2001) Cerebral ischemia and inflammation. Curr Opin Neurol 14:89–94

    Article  CAS  PubMed  Google Scholar 

  88. Park EM, Cho S, Frys K et al (2004) Interaction between inducible nitric oxide synthase and poly(ADP-ribose) polymerase in focal ischemic brain injury. Stroke 35:2896–2901

    Article  CAS  PubMed  Google Scholar 

  89. Coulom H, Birman S (2004) Chronic exposure to rotenone models sporadic Parkinson’s disease in Drosophila melanogaster. J Neurosci 24:10993–10998

    Article  CAS  PubMed  Google Scholar 

  90. Beal MF (2003) Bioenergetic approaches for neuroprotection in Parkinson’s disease. Ann Neurol 53(Suppl 3):S39–47 (discussion S38–47)

    Article  CAS  PubMed  Google Scholar 

  91. Celotto AM, Palladino MJ (2005) Drosophila: a “model” model system to study neurodegeneration. Mol Interv 5:292–303

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a research grant from the Department of Biotechnology (DBT), India (Grant No. BT/PR4908/MED/30/745/2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Srinivas Bharath.

Ethics declarations

Conflict of Interest

The authors declare that there are no conflicts of interest.

Additional information

M. D. Pandareesh and M. K. Shrivash have contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 478 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandareesh, M.D., Shrivash, M.K., Naveen Kumar, H.N. et al. Curcumin Monoglucoside Shows Improved Bioavailability and Mitigates Rotenone Induced Neurotoxicity in Cell and Drosophila Models of Parkinson’s Disease. Neurochem Res 41, 3113–3128 (2016). https://doi.org/10.1007/s11064-016-2034-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-2034-6

Keywords

Navigation