Skip to main content

Advertisement

Log in

Over-expression of X-Linked Inhibitor of Apoptosis Protein Modulates Multiple Aspects of Neuronal Ca2+ Signaling

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

X-linked inhibitor of apoptosis (XIAP) protects and preserves the function of neurons in both in vitro and in vivo models of excitotoxicity. Since calcium (Ca2+) overload is a pivotal event in excitotoxic neuronal cell death, we have determined whether XIAP over-expression influences Ca2+-signaling in primary cultures of mouse cortical neurons. Using cortical neuron cultures derived from wild-type (Wt) mice transiently transfected with XIAP or from transgenic mice that over-express XIAP, we show that XIAP opposes the rise in intracellular Ca2+ concentration by a variety of triggers. Relative to control neurons, XIAP over-expression produced a slight, but significant, elevation of resting Ca2+ concentrations. By contrast, the rise in intracellular Ca2+ concentrations produced by N-methyl-d-aspartate receptor stimulation and voltage gated Ca2+ channel activation were markedly attenuated by XIAP over-expression. The release of Ca2+ from intracellular stores induced by the sarco/endoplasmic reticulum Ca2+ ATPase inhibitor thapsigargin was also inhibited in neurons transiently transfected with XIAP. The pan-caspase inhibitor zVAD did not, however, diminish the rise in intracellular Ca2+ concentrations elicited by l-glutamate suggesting that XIAP influences Ca2+ signaling in a caspase-independent manner. Taken together, these findings demonstrate that the ability of XIAP to block excessive rises in intracellular Ca2+ by a variety of triggers may contribute to the neuroprotective effects of this anti-apoptotic protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lotocki G, Keane RW (2002) Inhibitors of apoptosis proteins in injury and disease. IUBMB Life 54(5):231–240. doi:10.1080/15216540215675

    Article  CAS  PubMed  Google Scholar 

  2. Hu BR, Liu CL, Ouyang Y, Blomgren K, Siesjo BK (2000) Involvement of caspase-3 in cell death after hypoxia-ischemia declines during brain maturation. J Cereb Blood Flow Metab: official j Int Soc Cereb Blood Flow Metab 20(9):1294–1300. doi:10.1097/00004647-200009000-00003

    Article  CAS  Google Scholar 

  3. Yakovlev AG, Ota K, Wang G, Movsesyan V, Bao WL, Yoshihara K, Faden AI (2001) Differential expression of apoptotic protease-activating factor-1 and caspase-3 genes and susceptibility to apoptosis during brain development and after traumatic brain injury. J Neurosci 21(19):7439–7446

    CAS  PubMed  Google Scholar 

  4. Kaur S, Wang F, Venkatraman M, Arsura M (2005) X-linked inhibitor of apoptosis (XIAP) inhibits c-Jun N-terminal kinase 1 (JNK1) activation by transforming growth factor beta1 (TGF-beta1) through ubiquitin-mediated proteosomal degradation of the TGF-beta1-activated kinase 1 (TAK1). J Biol Chem 280(46):38599–38608. doi:10.1074/jbc.M505671200

    Article  CAS  PubMed  Google Scholar 

  5. Birkey Reffey S, Wurthner JU, Parks WT, Roberts AB, Duckett CS (2001) X-linked inhibitor of apoptosis protein functions as a cofactor in transforming growth factor-beta signaling. J Biol Chem 276(28):26542–26549

    Article  CAS  PubMed  Google Scholar 

  6. Kairisalo M, Korhonen L, Sepp M, Pruunsild P, Kukkonen JP, Kivinen J, Timmusk T, Blomgren K, Lindholm D (2009) NF-kappaB-dependent regulation of brain-derived neurotrophic factor in hippocampal neurons by X-linked inhibitor of apoptosis protein. Eur J neurosci 30(6):958–966. doi:10.1111/j.1460-9568.2009.06898.x

    Article  PubMed  Google Scholar 

  7. Wang J, Menchenton T, Yin S, Yu Z, Bance M, Morris DP, Moore CS, Korneluk RG, Robertson GS (2010) Over-expression of X-linked inhibitor of apoptosis protein slows presbycusis in C57BL/6 J mice. Neurobiol Aging 31(7):1238–1249. doi:10.1016/j.neurobiolaging.2008.07.016

    Article  PubMed  Google Scholar 

  8. Xu D, Bureau Y, McIntyre DC, Nicholson DW, Liston P, Zhu Y, Fong WG, Crocker SJ, Korneluk RG, Robertson GS (1999) Attenuation of ischemia-induced cellular and behavioral deficits by X chromosome-linked inhibitor of apoptosis protein overexpression in the rat hippocampus. J Neurosci 19(12):5026–5033

    CAS  PubMed  Google Scholar 

  9. Trapp T, Korhonen L, Besselmann M, Martinez R, Mercer EA, Lindholm D (2003) Transgenic mice overexpressing XIAP in neurons show better outcome after transient cerebral ischemia. Mol Cell Neurosci 23(2):302–313

    Article  CAS  PubMed  Google Scholar 

  10. Choi DW (2005) Neurodegeneration: cellular defences destroyed. Nature 433(7027):696–698. doi:10.1038/433696a

    Article  CAS  PubMed  Google Scholar 

  11. Arundine M, Tymianski M (2003) Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium 34(4–5):325–337

    Article  CAS  PubMed  Google Scholar 

  12. Leissring MA, Yamasaki TR, Wasco W, Buxbaum JD, Parker I, LaFerla FM (2000) Calsenilin reverses presenilin-mediated enhancement of calcium signaling. Proc Natl Acad Sci USA 97(15):8590–8593

    Article  CAS  PubMed  Google Scholar 

  13. Paschen W, Mengesdorf T (2005) Endoplasmic reticulum stress response and neurodegeneration. Cell Calcium 38(3–4):409–415. doi:10.1016/j.ceca.2005.06.019

    Article  CAS  PubMed  Google Scholar 

  14. Pringle AK (2004) In, out, shake it all about: elevation of [Ca2 +]i during acute cerebral ischaemia. Cell Calcium 36(3–4):235–245. doi:10.1016/j.ceca.2004.02.014

    Article  CAS  PubMed  Google Scholar 

  15. Szydlowska K, Tymianski M (2010) Calcium, ischemia and excitotoxicity. Cell Calcium 47(2):122–129. doi:10.1016/j.ceca.2010.01.003

    Article  CAS  PubMed  Google Scholar 

  16. Kass GE, Orrenius S (1999) Calcium signaling and cytotoxicity. Environ Health Perspect 107(Suppl 1):25–35

    Article  CAS  PubMed  Google Scholar 

  17. Nagley P, Higgins GC, Atkin JD, Beart PM (2010) Multifaceted deaths orchestrated by mitochondria in neurones. Biochim Biophys Acta 1802 1:167–185. doi:10.1016/j.bbadis.2009.09.004

    Article  Google Scholar 

  18. Hu P, Han Z, Couvillon AD, Exton JH (2004) Critical role of endogenous Akt/IAPs and MEK1/ERK pathways in counteracting endoplasmic reticulum stress-induced cell death. J Biol Chem 279(47):49420–49429. doi:10.1074/jbc.M407700200

    Article  CAS  PubMed  Google Scholar 

  19. Mercer EA, Korhonen L, Skoglosa Y, Olsson PA, Kukkonen JP, Lindholm D (2000) NAIP interacts with hippocalcin and protects neurons against calcium-induced cell death through caspase-3-dependent and -independent pathways. EMBO J 19(14):3597–3607

    Article  CAS  PubMed  Google Scholar 

  20. Hirata H, Lopes GS, Jurkiewicz A, Garcez-do-Carmo L, Smaili SS (2012) Bcl-2 modulates endoplasmic reticulum and mitochondrial calcium stores in PC12 cells. Neurochem Res 37(2):238–243. doi:10.1007/s11064-011-0600-5

    Article  CAS  PubMed  Google Scholar 

  21. Saille C, Marin P, Martinou JC, Nicole A, London J, Ceballos-Picot I (1999) Transgenic murine cortical neurons expressing human Bcl-2 exhibit increased resistance to amyloid beta-peptide neurotoxicity. Neuroscience 92(4):1455–1463

    Article  CAS  PubMed  Google Scholar 

  22. Cheung NS, Beart PM, Pascoe CJ, John CA, Bernard O (2000) Human Bcl-2 protects against AMPA receptor-mediated apoptosis. J Neurochem 74(4):1613–1620

    Article  CAS  PubMed  Google Scholar 

  23. Offen D, Beart PM, Cheung NS, Pascoe CJ, Hochman A, Gorodin S, Melamed E, Bernard R, Bernard O (1998) Transgenic mice expressing human Bcl-2 in their neurons are resistant to 6-hydroxydopamine and 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine neurotoxicity. Proc Natl Acad Sci U S A 95(10):5789–5794

    Article  CAS  PubMed  Google Scholar 

  24. Moore CS, Hebb AL, Blanchard MM, Crocker CE, Liston P, Korneluk RG, Robertson GS (2008) Increased X-linked inhibitor of apoptosis protein (XIAP) expression exacerbates experimental autoimmune encephalomyelitis (EAE). J Neuroimmunol 203(1):79–93. doi:10.1016/j.jneuroim.2008.06.030

    Article  CAS  PubMed  Google Scholar 

  25. Mattson MP (2007) Calcium and neurodegeneration. Aging Cell 6(3):337–350

    Article  CAS  PubMed  Google Scholar 

  26. Schmidt EV, Christoph G, Zeller R, Leder P (1990) The cytomegalovirus enhancer: a pan-active control element in transgenic mice. Mol Cell Biol 10(8):4406–4411

    CAS  PubMed  Google Scholar 

  27. Nakanishi S, Nakajima Y, Masu M, Ueda Y, Nakahara K, Watanabe D, Yamaguchi S, Kawabata S, Okada M (1998) Glutamate receptors: brain function and signal transduction. Brain Res Brain Res Rev 26(2–3):230–235

    Article  PubMed  Google Scholar 

  28. Krause T, Gerbershagen MU, Fiege M, Weisshorn R, Wappler F (2004) Dantrolene–a review of its pharmacology, therapeutic use and new developments. Anaesthesia 59(4):364–373. doi:10.1111/j.1365-2044.2004.03658.x

    Article  CAS  PubMed  Google Scholar 

  29. Eckelman BP, Salvesen GS, Scott FL (2006) Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family. EMBO Rep 7(10):988–994. doi:10.1038/sj.embor.7400795

    Article  CAS  PubMed  Google Scholar 

  30. Shiozaki EN, Chai J, Rigotti DJ, Riedl SJ, Li P, Srinivasula SM, Alnemri ES, Fairman R, Shi Y (2003) Mechanism of XIAP-mediated inhibition of caspase-9. Mol Cell 11(2):519–527

    Article  CAS  PubMed  Google Scholar 

  31. Shi Y (2002) Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell 9(3):459–470

    Article  CAS  PubMed  Google Scholar 

  32. Motagally MA, Lukewich MK, Chisholm SP, Neshat S, Lomax AE (2009) Tumour necrosis factor alpha activates nuclear factor kappaB signalling to reduce N-type voltage-gated Ca2+ current in postganglionic sympathetic neurons. J Physiol 587(Pt 11):2623–2634. doi:10.1113/jphysiol.2009.172312

    Article  CAS  PubMed  Google Scholar 

  33. Li SY, Sun WG, Jia YH, Wu GS, An GS, Ni JH, Jia HT (2010) Calcium signal-initiated early activation of NF-kappaB in neurons is a neuroprotective event in response to kainic acid-induced excitotoxicity. Biochem Biokhimiia 75(1):101–109

    Article  CAS  Google Scholar 

  34. Wootz H, Hansson I, Korhonen L, Lindholm D (2006) XIAP decreases caspase-12 cleavage and calpain activity in spinal cord of ALS transgenic mice. Exp Cell Res 312(10):1890–1898. doi:10.1016/j.yexcr.2006.02.021

    Article  CAS  PubMed  Google Scholar 

  35. Pinton P, Rizzuto R (2006) Bcl-2 and Ca2+ homeostasis in the endoplasmic reticulum. Cell Death Differ 13(8):1409–1418. doi:10.1038/sj.cdd.4401960

    Article  CAS  PubMed  Google Scholar 

  36. Pinton P, Ferrari D, Magalhaes P, Schulze-Osthoff K, Di Virgilio F, Pozzan T, Rizzuto R (2000) Reduced loading of intracellular Ca(2+) stores and downregulation of capacitative Ca(2+) influx in Bcl-2-overexpressing cells. J Cell Biol 148(5):857–862

    Article  CAS  PubMed  Google Scholar 

  37. Eckenrode EF, Yang J, Velmurugan GV, Foskett JK, White C (2010) Apoptosis protection by Mcl-1 and Bcl-2 modulation of inositol 1,4,5-trisphosphate receptor-dependent Ca2+ signaling. J Biol Chem 285(18):13678–13684. doi:10.1074/jbc.M109.096040

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Council of Canada and the Alzheimer’s Society of Canada. Graduate student funding for J Grant was provided by the Alzheimer’s Society of Canada Doctoral Studentship Award and the National Research Council of Canada GSSSP. This work was supported in part by a biomedical research grant from the MS Society of Canada (GSR). The authors would like to thank Dr. Peter Liston for providing the XIAP-dsRed plasmid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeff Grant.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11064_2013_989_MOESM1_ESM.docx

Supplemental Figure 1. XIAP over-expression protects neurons from L-glutamate-induced toxicity. An MTT assay was used to assess cell viability of cortical neuronal cultures derived from ubXIAP mice (n = 13) and Wt littermates (n = 12), 24 hours after a 15 minute exposure to 1 mM glutamate (glut). Bars represent mean percent cell viability, expressed as a ratio of viable glutamate treated samples relative to vehicle treated controls. Error bars represent mean +/-standard error of the mean. *p<0.05, unpaired Student’s t-test. (DOCX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grant, J., Parker, K., Moore, C.S. et al. Over-expression of X-Linked Inhibitor of Apoptosis Protein Modulates Multiple Aspects of Neuronal Ca2+ Signaling. Neurochem Res 38, 847–856 (2013). https://doi.org/10.1007/s11064-013-0989-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-013-0989-0

Keywords

Navigation