Skip to main content

Advertisement

Log in

Neuroprotective Strategies in Hippocampal Neurodegeneration Induced by the Neurotoxicant Trimethyltin

  • Overview
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The selective vulnerability of specific neuronal subpopulations to trimethyltin (TMT), an organotin compound with neurotoxicant effects selectively involving the limbic system and especially marked in the hippocampus, makes it useful to obtain in vivo models of neurodegeneration associated with behavioural alterations, such as hyperactivity and aggression, cognitive impairment as well as temporal lobe epilepsy. TMT has been widely used to study neuronal and glial factors involved in selective neuronal death, as well as the molecular mechanisms leading to hippocampal neurodegeneration (including neuroinflammation, excitotoxicity, intracellular calcium overload, mitochondrial dysfunction and oxidative stress). It also offers a valuable instrument to study the cell–cell interactions and signalling pathways that modulate injury-induced neurogenesis, including the involvement of newly generated neurons in the possible repair processes. Since TMT appears to be a useful tool to damage the brain and study the various responses to damage, this review summarises current data from in vivo and in vitro studies on neuroprotective strategies to counteract TMT-induced neuronal death, that may be useful to elucidate the role of putative candidates for translational medical research on neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Vajda FJ (2002) Neuroprotection and neurodegenerative disease. J Clin Neurosci 9:4–8

    Article  PubMed  Google Scholar 

  2. Mattson MP (2008) Glutamate and neurotrophic factors in neuronal plasticity and disease. Ann NY Acad Sci 1144:97–112

    Article  PubMed  CAS  Google Scholar 

  3. Minghetti L (2005) Role of inflammation in neurodegenerative diseases. Curr Opin Neurol 18:315–321

    Article  PubMed  CAS  Google Scholar 

  4. Craggs L, Kalaria RN (2011) Revisiting dietary antioxidants, neurodegeneration and dementia. NeuroReport 22:1–3

    Article  PubMed  CAS  Google Scholar 

  5. Hennigan A, O’Callaghan RM, Kelly AM (2007) Neurotrophins and their receptors: roles in plasticity, neurodegeneration and neuroprotection. Biochem Soc Trans 35:424–427

    Article  PubMed  CAS  Google Scholar 

  6. Parent JM (2003) Injury-induced neurogenesis in the adult mammalian brain. Neuroscientist 9:261–272

    Article  PubMed  Google Scholar 

  7. Geloso MC, Corvino V, Michetti F (2011) Trimethyltin-induced hippocampal degeneration as a tool to investigate neurodegenerative processes. Neurochem Int 58:729–738

    Article  CAS  Google Scholar 

  8. Chang LW, Wenger GR, McMillan DE, Dyer RS (1983) Species and strain comparison of acute neurotoxic effects of trimethyltin in mice and rats. Neurobehav Toxicol Teratol 5:337–350

    PubMed  CAS  Google Scholar 

  9. Balaban CD, O’Callaghan JP, Billingsley ML (1988) Trimethyltin-induced neuronal damage in the rat brain: comparative studies using silver degeneration stains, immunocytochemistry and immunoassay for neurotypic and gliotypic proteins. Neuroscience 26:337–361

    Article  PubMed  CAS  Google Scholar 

  10. Harry GJ, Lefebvre d’Hellencourt C (2003) Dentate Gyrus: alterations that occur with hippocampal injury. Neurotoxicology 24:343–356

    Article  PubMed  Google Scholar 

  11. Geloso MC, Vinesi P, Michetti F (1996) Parvalbumin-immunoreactive neurons are not affected by trimethyltin-induced neurodegeneration in the rat hippocampus. Exp Neurol 139:269–277

    Article  PubMed  CAS  Google Scholar 

  12. Geloso MC, Vinesi P, Michetti F (1997) Calretinin-containing neurons in trimethyltin-induced neurodegeneration in the rat hippocampus. An immunocytochemical study. Exp Neurol 146:67–73

    Article  PubMed  CAS  Google Scholar 

  13. Pugliese M, Carrasco JL, Geloso MC, Mascort J, Michetti F, Mahy N (2004) Gamma-aminobutyric acidergic interneuron vulnerability to aging in canine prefrontal cortex. J Neurosci Res 77:913–920

    Article  PubMed  CAS  Google Scholar 

  14. Geloso MC, Corvino V, Cavallo V, Toesca A, Guadagni E, Passalacqua R, Michetti F (2004) Expression of astrocytic nestin in the rat hippocampus during trimethyltin-induced neurodegeneration. Neurosci Lett 357:103–106

    Article  PubMed  CAS  Google Scholar 

  15. El-Fawal HA, O’Callaghan JP (2008) Autoantibodies to neurotypic and gliotypic proteins as biomarkers of neurotoxicity: assessment of trimethyltin (TMT). Neurotoxicology 29:109–115

    Article  PubMed  CAS  Google Scholar 

  16. Little AR, Benkovic SA, Miller DB, O’Callaghan JP (2002) Chemically induced neuronal damage and gliosis: enhanced expression of the proinflammatory chemokine, monocyte chemoattractant protein (MCP)-1, without a corresponding increase in proinflammatory cytokines(1). Neuroscience 115:307–320

    Article  PubMed  CAS  Google Scholar 

  17. Funk JA, Gohlke J, Kraft AD, McPherson CA, Collins JB, Jean Harry G (2011) Voluntary exercise protects hippocampal neurons from trimethyltin injury: possible role of interleukin-6 to modulate tumor necrosis factor receptor mediated neurotoxicity. Brain Behav Immun 25:1063–1077

    Article  PubMed  CAS  Google Scholar 

  18. Koczyk D (1996) How does trimethyltin affect the brain: facts and hypotheses. Acta Neurobiol Exp 56:587–596

    CAS  Google Scholar 

  19. Kreyberg S, Torvik A, Bjørneboe A, Wiik-Larsen W, Jacobsen D (1992) Trimethyltin poisoning: report of a case with postmortem examination. Clin Neuropathol 11:256–259

    PubMed  CAS  Google Scholar 

  20. Aldrige WN, Street BW, Skilleter DN (1977) Oxidative phosphorylation. Halide-dependent and halide-independent effects of triorganotin and triorganolead compounds on mitochondrial functions. Biochem J 168:353–364

    Google Scholar 

  21. Misiti F, Orsini F, Clementi ME, Lattanzi W, Giardina B, Michetti F (2008) Mitochondrial oxygen consumption inhibition importance for TMT-dependent cell death in undifferentiated PC12 cells. Neurochem Int 52:1092–1099

    Article  PubMed  CAS  Google Scholar 

  22. Billingsley ML, Yun J, Reese BE, Davidson CE, Buck-Koehntop BA, Veglia G (2006) Functional and structural properties of stannin: roles in cellular growth, selective toxicity, and mitochondrial responses to injury. J Cell Biochem 98:243–250

    Article  PubMed  CAS  Google Scholar 

  23. Piacentini R, Gangitano C, Ceccariglia S, Del Fà A, Azzena GB, Michetti F, Grassi C (2008) Dysregulation of intracellular calcium homeostasis is responsible for neuronal death in an experimental model of selective hippocampal degeneration induced by trimethyltin. J Neurochem 105:2109–2121

    Article  PubMed  CAS  Google Scholar 

  24. Ceccariglia S, D’Altocolle A, Del Fa’ A, Pizzolante F, Caccia E, Michetti F, Gangitano C (2011) Cathepsin D plays a crucial role in the trimethyltin-induced hippocampal neurodegeneration process. Neuroscience 174:160–170

    Article  PubMed  CAS  Google Scholar 

  25. Kraft DA, McPherson CA, Harry GJ (2009) Heterogeneity of microglia and TNF signaling as determinants for neuronal death or survival. Neurotoxicology 30(5):785–793

    Article  PubMed  CAS  Google Scholar 

  26. Harry GJ, Bruccoleri A, Lefebvre d’Hellencourt C (2003) Differential modulation of hippocampal chemical-induced injury response by ebselen, pentoxifylline, and TNF-alpha- IL-1alpha-, and IL-6-neutralizing antibodies. J Neurosci Res 73:526–536

    Article  CAS  Google Scholar 

  27. Harry GJ, Lefebvre d’Hellencourt C, McPherson CA, Funk JA, Aoyama M, Wine RN (2008) Tumor necrosis factor p55 and p75 receptors are involved in chemical-induced apoptosis of dentate granule neurons. J Neurochem 106:281–298

    Article  PubMed  CAS  Google Scholar 

  28. Harry GJ, Tyler K, Lefebvre d’Hellencourt C, Tilson HA, Maier WE (2002) Morphological alterations and elevations in tumor necrosis factor-alpha, interleukin (IL)-1alpha, and IL-6 in mixed glia cultures following exposure to trimethyltin: modulation by proinflammatory cytokine recombinant proteins and neutralizing antibodies. Toxicol Appl Pharmacol 180:205–218

    Article  PubMed  CAS  Google Scholar 

  29. Tran HY, Shin EJ, Saito K, Nguyen XK, Chung YH, Jeong JH, Bach JH, Park DH, Yamada K, Nabeshima T, Yoneda Y, Kim HC (2012) Protective potential of IL-6 against trimethyltin-induced neurotoxicity in vivo. Free Radic Biol Med 52:1159–1174

    Article  PubMed  CAS  Google Scholar 

  30. Reese BE, Davidson C, Billingsley ML, Yun J (2005) Protein kinase C epsilon regulates tumor necrosis factor-alpha-induced stannin gene expression. J Pharmacol Exp Ther 314:61–69

    Article  PubMed  CAS  Google Scholar 

  31. Maier WE, Brown HW, Tilson HA, Luster MI, Harry GJ (1995) Trimethyltin increases interleukin (IL)-1 alpha, IL-6 and tumor necrosis factor alpha mRNA levels in rat hippocampus. J Neuroimmunol 59:65–75

    Article  PubMed  CAS  Google Scholar 

  32. Brabeck C, Michetti F, Geloso MC, Corvino V, Goezalan F, Meyermann R, Schluesener H (2002) Expression of EMAP-II activated monocytes/microglial cells in different regions of the rat hippocampus after timethyltin-induced brain damage. Exp Neurol 177:341–346

    Article  PubMed  CAS  Google Scholar 

  33. Little AR, Miller DB, Li S, Kashon ML, O’Callaghan JP (2012) Trimethyltin-induced neurotoxicity: gene expression pathway analysis, q-RT-PCR and immunoblotting reveal early effects associated with hippocampal damage and gliosis. Neurotoxicol Teratol 34:72–82

    Article  PubMed  CAS  Google Scholar 

  34. Morita M, Imai H, Liu Y, Xu X, Sadamatsu M, Nakagami R, Shirakawa T, Nakano K, Kita Y, Yoshida K, Tsunashima K, Kato N (2008) FK506-protective effects against trimethyltin neurotoxicity in rats: hippocampal expression analyses reveal the involvement of periarterial osteopontin. Neuroscience 153:1135–1145

    Article  PubMed  CAS  Google Scholar 

  35. Liu Y, Imai H, Sadamatsu M, Tsunashima K, Kato N (2005) Cytokines participate in neuronal death induced by trimethyltin in the rat hippocampus via type II glucocorticoid receptors. Neurosci Res 51:319–327

    Article  PubMed  CAS  Google Scholar 

  36. Corvino V, Marchese E, Zarkovic N, Zarkovic K, Cindric M, Waeg G, Michetti F, Geloso MC (2011) Distribution and time-course of 4-hydroxynonenal, heat shock protein 110/105 family members and cyclooxygenase-2 expression in the hippocampus of rat during trimethyltin-induced neurodegeneration. Neurochem Res 36:1490–1500

    Article  PubMed  CAS  Google Scholar 

  37. Pompili E, Nori SL, Geloso MC, Guadagni E, Corvino V, Michetti F, Fumagalli L (2004) Trimethyltin-induced differential expression of PAR subtypes in reactive astrocytes of the rat hippocampus. Brain Res Mol Brain Res 122:93–98

    Article  PubMed  CAS  Google Scholar 

  38. Allaman I, Belanger M, Magistretti PJ (2011) Astrocyte–neuron metabolic relationships: for better and for worse. Trends Neurosci 34:76–87

    Article  PubMed  CAS  Google Scholar 

  39. Abrahám IM, Harkany T, Horvath KM, Luiten PG (2001) Action of glucocorticoids on survival of nerve cells: promoting neurodegeneration or neuroprotection? J Neuroendocrinol 13:749–760

    Article  PubMed  Google Scholar 

  40. Nichols NR, Agolley D, Zieba M, Bye N (2005) Glucocorticoid regulation of glial responses during hippocampal neurodegeneration and regeneration. Brain Res Brain Res Rev 48:287–301

    Article  PubMed  CAS  Google Scholar 

  41. Dinkel K, MacPherson A, Sapolsky RM (2003) Novel glucocorticoid effects on acute inflammation in the CNS. J Neurochem 84:705–716

    Article  PubMed  CAS  Google Scholar 

  42. Gerbec EN, Messing RB, Sparber SB (1988) Parallel changes in operant behavioural adaptation and hippocampal corticosterone binding in rats treated with trimethyltin. Brain Res 460:346–351

    Article  PubMed  CAS  Google Scholar 

  43. Chang LW, Hough AJ, Bivins FG, Cockerill D (1989) Effects of adrenalectomy and corticosterone on hippocampal lesions induced by trimethyltin. Biomed Environ Sci 2:54–64

    PubMed  CAS  Google Scholar 

  44. Stanton ME, Coussons ME, Kuhn CM (1992) Corticosterone hypersecretion in preweanling rats exposed neonatally to trimethyltin. Neurotoxicology 13:421–428

    PubMed  CAS  Google Scholar 

  45. Imai H, Kabuto M, Takita M, Kato N (1998) Interleukin-1 receptor antagonist inhibits transient increase of plasma corticosterone in the initial phase of trimethyltin-induced hippocampal necrosis. Neurotoxicology 19:163–166

    PubMed  CAS  Google Scholar 

  46. Imai H, Nishimura T, Sadamatsu M, Liu Y, Kabuto M, Kato N (2001) Type II glucocorticoid receptors are involved in neuronal death and astrocyte activation induced by trimethyltin in the rat hippocampus. Exp Neurol 171:22–28

    Article  PubMed  CAS  Google Scholar 

  47. Shuto M, Higuchi K, Sugiyama C, Yoneyama M, Kuramoto N, Nagashima R, Kawada K, Ogita K (2009) Endogenous and exogenous glucocorticoids prevent trimethyltin from causing neuronal degeneration of the mouse brain in vivo: involvement of oxidative stress pathways. J Pharmacol Sci 110:424–436

    Article  PubMed  CAS  Google Scholar 

  48. Ogita K, Sugiyama C, Acosta GB, Kuramoto N, Shuto M, Yoneyama M, Nakamura Y, Shiba T, Yamaguchi T (2012) Opposing roles of glucocorticoid receptor and mineralocorticoid receptor in trimethyltin-induced cytotoxicity in the mouse hippocampus. Neurosci Lett 511:116–119

    Article  PubMed  CAS  Google Scholar 

  49. Tsutsumi S, Akaike M, Arimitsu H, Imai H, Kato N (2002) Circulating corticosterone alters the rate of neuropathological and behavioural changes induced by trimethyltin in rats. Exp Neurol 173:86–94

    Article  PubMed  CAS  Google Scholar 

  50. Little AR, Sriram K, O’Callaghan JP (2006) Corticosterone regulates expression of CCL2 in the intact and chemically injured hippocampus. Neurosci Lett 399:162–166

    Article  PubMed  CAS  Google Scholar 

  51. Bruccoleri A, Pennypacker KR, Harry JG (1999) Effect of dexamethasone on elevated cytokine mrna levels in chemical-induced hippocampal injury. Neurosci Res 57:916–926

    Article  CAS  Google Scholar 

  52. Kraft AD, Harry GJ (2011) Features of microglia and neuroinflammation relevant to environmental exposure and neurotoxicity. Int J Environ Res Public Health 8:2980–3018

    Article  PubMed  Google Scholar 

  53. Woods AG, Poulsen FR, Gall CM (1999) Dexamethasone selectively suppresses microglial trophic responses to hippocampal deafferentation. Neuroscience 91:1277–1289

    Article  PubMed  CAS  Google Scholar 

  54. Viscomi MT, Florenzano F, Latini L, Amantea D, Bernardi G, Molinari M (2008) Methylprednisolone treatment delays remote cell death after focal brain lesion. Neuroscience 154:1267–1282

    Article  PubMed  CAS  Google Scholar 

  55. Kiefer R, Kreutzberg GW (1991) Effects of dexamethasone on microglial activation in vivo: selective downregulation of major histocompatibility complex class II expression in regenerating facial nucleus. J Neuroimmunol 34:99–108

    Article  PubMed  CAS  Google Scholar 

  56. Benkovic SA, O’Callaghan JP, Miller DB (2009) Protracted exposure to supraphysiological levels of corticosterone does not cause neuronal loss or damage and protects against kainic acid-induced neurotoxicity in the hippocampus of C57BL/6 J mice. Neurotoxicology 30:965–976

    Article  PubMed  CAS  Google Scholar 

  57. Minghetti L (2004) Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. J Neuropathol Exp Neurol 63:901–910

    PubMed  CAS  Google Scholar 

  58. Geloso MC, Vercelli A, Corvino V, Repici ME, Boca M, Haglid K, Zelano G, Michetti F (2002) Cyclooxygenase-2 and caspase-3 expression in trimethyltin-induced apoptosis in the mouse hippocampus. Exp Neurol 175:152–160

    Article  PubMed  CAS  Google Scholar 

  59. Shirakawa T, Nakano K, Hachiya NS, Kato N, Kaneko K (2007) Temporospatial patterns of COX-2 expression and pyramidal cell degeneration in the rat hippocampus after trimethyltin administration. Neurosci Res 59:117–123

    Article  PubMed  CAS  Google Scholar 

  60. Huong NQ, Nakamura Y, Kuramoto N, Yoneyama M, Nagashima R, Shiba T, Yamaguchi T, Hasebe S, Ogita K (2011) Indomethacin ameliorates trimethyltin-induced neuronal damage in vivo by attenuating oxidative stress in the dentate gyrus of mice. Biol Pharm Bull 34:1856–1863

    Article  PubMed  Google Scholar 

  61. Shohami E, Ginis I, Hallenbeck JM (1999) Dual role of tumor necrosis factor alpha in brain injury. Cytokine Growth Factor Rev 10:119–130

    Article  PubMed  CAS  Google Scholar 

  62. Latini L, Geloso MC, Corvino V, Giannetti S, Florenzano F, Viscomi MT, Michetti F, Molinari M (2010) TMT intoxication induces expression of nitric oxide synthase in neurons and purinergic ionotropic receptor 2 in astrocytes in the hippocampus. J Neurosci Res 88:500–509

    PubMed  CAS  Google Scholar 

  63. Shirakawa T, Nakano K, Hachiya N, Kato N, Kaneko K (2011) The involvement of P2X1 degeneration in the rat hippocampus after trimethyltin administration. Neurosci Res 71:396–404

    Article  PubMed  CAS  Google Scholar 

  64. Brambilla R, Ceruti S, Malorni W, Cattabeni F, Abbracchio MP (2000) A novel gliotic P2 receptor mediating cyclooxygenase-2 induction in rat and human astrocytes. J Auton Nerv Syst 81:3–9

    Article  PubMed  CAS  Google Scholar 

  65. Nito C, Ueda M, Inaba T, Katsura K, Katayama Y (2011) FK506 ameliorates oxidative damage and protects rat brain following transient focal cerebral ischemia. Neurol Res 33:881–889

    Article  PubMed  CAS  Google Scholar 

  66. Nishimura T, Imai H, Minabe Y, Sawa A, Kato N (2006) Beneficial effects of FK506 for experimental temporal lobe epilepsy. Neurosci Res 56:386–390

    Article  PubMed  CAS  Google Scholar 

  67. Zawadzka M, Kaminska B (2005) A novel mechanism of FK506-mediated neuroprotection: downregulation of cytokine expression in glial cells. Glia 49:36–51

    Article  PubMed  Google Scholar 

  68. Barrientos RM (2011) Voluntary exercise as an anti-neuroinflammatory therapeutic. Brain Behav Immun 25:1061–1062

    Article  PubMed  Google Scholar 

  69. Ding YH, Mrizek M, Lai Q, Wu Y, Reyes R Jr, Li J, Davis WW, Ding Y (2006) Exercise preconditioning reduces brain damage and inhibits TNF-alpha receptor expression after hypoxia/reoxygenation: an in vivo and in vitro study. Curr Neurovasc Res 3:263–271

    Article  PubMed  CAS  Google Scholar 

  70. Parachikova A, Nichol KE, Cotman CW (2008) Short-term exercise in aged Tg2576 mice alters neuroinflammation and improves cognition. Neurobiol Dis 30:121–129

    Article  PubMed  CAS  Google Scholar 

  71. Nybo L, Nielsen B, Pedersen BK, Secher NH (2002) Interleukin-6 release from the human brain during prolonged exercise. J Physiol 542:991–995

    Article  PubMed  CAS  Google Scholar 

  72. Zarković N, Zarković K, Schaur RJ, Stolc S, Schlag G, Redl H, Waeg G, Borović S, Loncarić I, Jurić G, Hlavka V (1999) 4-Hydroxynonenal as a second messenger of free radicals and growth modifying factor. Life Sci 65:1901–1904

    Article  PubMed  Google Scholar 

  73. Coyle JT, Puttfarken P (1993) Oxidative stress, glutamate and neurodegenerative disorders. Science 262:689–695

    Article  PubMed  CAS  Google Scholar 

  74. Schulz JB, Lindenau J, Seyfried J, Dichgans J (2000) Glutathione, oxidative stress and neurodegeneration. Eur J Biochem 267:4904–4911

    Article  PubMed  CAS  Google Scholar 

  75. Ali SF, LeBel CP, Bondy SC (1992) Reactive oxygen species formation as a biomarker of methylmercury and trimethyltin neurotoxicity. Neurotoxicology 13:637–648

    PubMed  CAS  Google Scholar 

  76. Zhang L, Li L, Prabhakaran K, Borowitz JL, Isom GE (2006) Trimethyltin-induced apoptosis is associated with upregulation of inducible nitric oxide synthase and Bax in a hippocampal cell line. Toxicol Appl Pharmacol 216:34–43

    Article  PubMed  CAS  Google Scholar 

  77. Viviani B, Corsini E, Pesenti M, Galli CL, Marinovich M (2001) Trimethyltin-activated cyclooxygenase stimulates tumor necrosis factor-alpha release from glial cells through reactive oxygen species. Toxicol Appl Pharmacol 172:93–97

    Article  PubMed  CAS  Google Scholar 

  78. Shin EJ, Suh SK, Lim YK, Jhoo WK, Hjelle OP, Ottersen OP, Shin CY, Ko KH, Kim WK, Kim DS, Chun W, Ali S, Kim HC (2005) Ascorbate attenuates trimethyltin-induced oxidative burden and neuronal degeneration in the rat hippocampus by maintaining glutathione homeostasis. Neuroscience 133:715–727

    Article  PubMed  CAS  Google Scholar 

  79. Yoneyama M, Nishiyama N, Shuto M, Sugiyama C, Kawada K, Seko K, Nagashima R, Ogita K (2008) In vivo depletion of endogenous glutathione facilitates trimethyltin-induced neuronal damage in the dentate gyrus of mice by enhancing oxidative stress. Neurochem Int 52:761–769

    Article  PubMed  CAS  Google Scholar 

  80. Shuto M, Seko K, Kuramoto N, Sugiyama C, Kawada K, Yoneyama M, Nagashima R, Ogita K (2009) Activation of c-Jun N-terminal kinase cascades is involved in part of the neuronal degeneration induced by trimethyltin in cortical neurons of mice. J Pharmacol Sci 109:60–70

    Article  PubMed  CAS  Google Scholar 

  81. Wood PL, Khan MA, Kulow SR, Mahmood SA, Moskal JR (2006) Neurotoxicity of reactive aldehydes: the concept of “aldehyde load” as demonstrated by neuroprotection with hydroxylamines. Brain Res 1095:190–199

    Article  PubMed  CAS  Google Scholar 

  82. Haddad El-B, McCluskie K, Birrell MA, Dabrowski D, Pecoraro M, Underwood S, Chen B, DeSanctis GT, Webber SE, Foster ML, Belvisi MG (2002) Differential effects of ebselen on neutrophil recruitment, chemokine, and inflammatory mediator expression in a rat model of lipopolysaccharide-induced pulmonary inflammation. J Immunol 169:974–982

    CAS  Google Scholar 

  83. Koizumi H, Fujisawa H, Suehiro E, Shirao S, Suzuki M (2011) Neuroprotective effects of ebselen following forebrain ischemia: involvement of glutamate and nitric oxide. Neurol Med Chir (Tokyo) 51:337–343

    Article  Google Scholar 

  84. Bloch ML, Hong LS (2005) Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 76:77–98

    Article  CAS  Google Scholar 

  85. Bjorklund A, Lindvall O (2000) Cell replacement therapies for central nervous systems disorders. Nat Neurosci 3:537–544

    Article  PubMed  CAS  Google Scholar 

  86. Kim SU, de Vellis J (2009) Stem cell-based cell therapy in neurological diseases: a review. J Neurosci Res 87:2183–2200

    Article  PubMed  CAS  Google Scholar 

  87. Freeman JN III, Baisden RH, Woodruff ML (1995) Fetal Ammon’s horn transplants improve acquisition of a radial arm maze and a low-rate operant schedule in trimethyltin-treated rats. Cell Transplant 4:113–122

    Article  PubMed  Google Scholar 

  88. Woodruff ML, Baisden RH, Nonneman AJ (1991) Anatomical and behavioral sequelae of fetal brain transplants in rats with TMT-induced neurodegeneration. Neurotoxicology 12:427–444

    PubMed  CAS  Google Scholar 

  89. Roy A, Agrawal AK, Husain R, Dubey MP, Seth PK (1999) Cholinergic and serotonergic alterations in the rat hippocampus following trimethyltin exposure and fetal neural transplantation. Neurosci Lett 259:173–176

    Article  PubMed  CAS  Google Scholar 

  90. Geloso MC, Giannetti S, Cenciarelli C, Budoni M, Casalbore P, Maira G, Michetti F (2007) Transplantation of foetal neural stem cells into the rat hippocampus during trimethyltin-induced neurodegeneration. Neurochem Res 1032:2054–2061

    Article  CAS  Google Scholar 

  91. Yoneyama M, Seko K, Kawada K, Sugiyama C, Ogita K (2009) High susceptibility of cortical neural progenitor cells to trimethyltin toxicity: involvement of both caspases and calpain in cell death. Neurochem Int 55:257–264

    Article  PubMed  CAS  Google Scholar 

  92. Casalbore P, Barone I, Felsani A, D’Agnano I, Michetti F, Maira G, Cenciarelli C (2010) Neural stem cells modified to express BDNF antagonize trimethyltin-induced neurotoxicity through PI3 K/Akt and MAP kinase pathways. J Cell Physiol 224:710–721

    Article  PubMed  CAS  Google Scholar 

  93. Martino G, Pluchino S, Bonfanti L, Schwartz M (2011) Brain regeneration in physiology and pathology: the immune signature driving therapeutic plasticity of neural stem cells. Physiol Rev 91:1281–1304

    Article  PubMed  CAS  Google Scholar 

  94. McPherson CA, Aoyama M, Harry GJ (2011) Interleukin (IL)-1 and IL-6 regulation of neural progenitor cell proliferation with hippocampal injury: differential regulatory pathways in the subgranular zone (SGZ) of the adolescent and mature mouse brain. Brain Behav Immun 25:850–862

    Article  PubMed  CAS  Google Scholar 

  95. McPherson CA, Kraft AD, Harry GJ (2011) Injury-induced neurogenesis: consideration of resident microglia as supportive of neural progenitor cells. Neurotox Res 19:341–352

    Article  PubMed  Google Scholar 

  96. Ogita K, Nishiyama N, Sugiyama C, Higuchi K, Yoneyama M, Yoneda Y (2005) Regeneration of granule neurons after lesioning of hippocampal dentate gyrus: evaluation using adult mice treated with trimethyltin chloride as a model. J Neurosci Res 82:609–621

    Article  PubMed  CAS  Google Scholar 

  97. Yoneyama M, Kaxada K, Ogita K (2010) Enhanced neurogenesis in the olfactory bulb in adult mice after injury induced by acute treatment with trimethyltin. J Neurosci Res 88:1242–1251

    PubMed  CAS  Google Scholar 

  98. Corvino V, Geloso MC, Cavallo V, Guadagni E, Passalacqua R, Florenzano F, Giannetti S, Molinari M, Michetti F (2005) Enhanced neurogenesis during trimethyltin-induced neurodegeneration in the hippocampus of the adult rat. Brain Res Bull 65:471–477

    Article  PubMed  CAS  Google Scholar 

  99. Gray WP (2008) Neuropeptide Y signalling on hippocampal stem cells in heath and disease. Mol Cell Endocrinol 288:52–62

    Article  PubMed  CAS  Google Scholar 

  100. Corvino V, Marchese E, Giannetti S, Lattanzi W, Bonvissuto D, Biamonte F, Mongiovì AM, Michetti F, Geloso MC (2012) The neuroprotective and neurogenic effects of neuropeptide Y administration in an animal model of hippocampal neurodegeneration and temporal lobe epilepsy induced by trimethyltin. J Neurochem 122:415–426

    Article  CAS  Google Scholar 

  101. Coyle JT, Price DL, DeLong MR (1983) Alzheimer’s disease: a disorder of cortical cholinergic innervation. Science 219:1184–1190

    Article  PubMed  CAS  Google Scholar 

  102. Chesselet MF, Richter F (2011) Modelling of Parkinson’s disease in mice. Lancet Neurol 10:1108–1118

    Article  PubMed  Google Scholar 

  103. Ishikawa K, Kubo T, Shibanoki S, Matsumoto A, Hata H, Asai S (1997) Hippocampal degeneration inducing impairment of learning in rats: model of dementia? Behav Brain Res 83:39–44

    Article  PubMed  CAS  Google Scholar 

  104. Gunasekar P, Li L, Prabhakaran K, Eybl V, Borowitz JL, Isom GE (2001) Mechanisms of the apoptotic and necrotic actions of trimethyltin in cerebellar granule cells. Toxicol Sci 64:83–89

    Article  PubMed  CAS  Google Scholar 

  105. Naalsund LU, Allen CN, Fonnum F (1985) Changes in neurobiological parameters in the hippocampus after exposure to trimethyltin. Neurotoxicology 6:145–158

    PubMed  CAS  Google Scholar 

  106. Patel M, Ardelt BK, Yim GK, Isom GE (1990) Interaction of trimethyltin with hippocampal glutamate. Neurotoxicology 11:601–608

    PubMed  CAS  Google Scholar 

  107. Aschner M, Gannon M, Kimelberg HK (1992) Interactions of trimethyltin (TMT) with rat primary astrocyte cultures: altered uptake and efflux of rubidium, L-glutamate and D-aspartate. Brain Res 582:181–185

    Article  PubMed  CAS  Google Scholar 

  108. Patterson TA, Eppler B, Dawson R Jr (1996) Attenuation of trimethyltin-evoked glutamate (GLU) efflux from rat cortical and hippocampal slices. Neurotoxicol Teratol 18:697–702

    Article  PubMed  CAS  Google Scholar 

  109. Lipe GW, Ali SF, Newport GD, Scallet AC, Slikker W Jr (1991) Effect of trimethyltin on amino acid concentrations in different regions of the mouse brain. Pharmacol Toxicol 68:450–455

    Article  PubMed  CAS  Google Scholar 

  110. Bahr BA, Tiriveedhi S, Park GY, Lynch G (1995) Induction of calpain-mediated spectrin fragments by pathogenic treatments in long-term hippocampal slices. J Pharmacol Exp Ther 273:902–908

    PubMed  CAS  Google Scholar 

  111. Munirathinam S, Rogers G, Bahr BA (2002) Positive modulation of alpha-amino-3 hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors elicits neuroprotection after trimethyltin exposure in hippocampus. Toxicol Appl Pharmacol 185:111–118

    Article  PubMed  CAS  Google Scholar 

  112. Arai AC, Kessler M (2007) Pharmacology of ampakine modulators: from AMPA receptors to synapses and behavior. Curr Drug Targets 8:583–602

    Article  PubMed  CAS  Google Scholar 

  113. Earley B, Burke M, Leonard BE, Gouret CJ, Junien JL (1990) A comparison of the psychopharmacological profiles of phencyclidine, ketamine and (+) SKF 10,047 in the trimethyltin rat model. Neuropharmacology 29:695–703

    Article  PubMed  CAS  Google Scholar 

  114. Earley B, Burke M, Leonard BE (1992) Behavioural, biochemical and histological effects of trimethyltin (TMT) induced brain damage in the rat. Neurochem Int 21:351–366

    Article  PubMed  CAS  Google Scholar 

  115. Nishimura T, Schwarzer C, Furtinger S, Imai H, Kato N, Sperk G (2001) Changes in the GABA-ergic system induced by trimethyltin application in the rat. Brain Res Mol Brain Res 97:1–6

    Article  PubMed  CAS  Google Scholar 

  116. Doctor SV, Costa LG, Kendall DA, Murphy SD (1982) Trimethyltin inhibits uptake of neurotransmitters into mouse forebrain synaptosomes. Toxicology 25:213–221

    Article  PubMed  CAS  Google Scholar 

  117. O’Connell A, Earley B, Leonard BE (1994) Effects of the GABA agonist THIP (gaboxadol) on trimethyltin induced behavioural neurotoxicity in the rat. Med Sci Res 22:201–202

    Google Scholar 

  118. Ishikura N, Tsunashima K, Watanabe KI, Nishimura T, Shirayama Y, Kato N (2001) Temporal change of hippocampal enkephalin and dynorphin mRNA following trimethyltin intoxication in rats: effect of anticonvulsant. Neurosci Lett 306:157–160

    Article  PubMed  CAS  Google Scholar 

  119. Zimmer L, Woolley D, Chang L (1985) Does phenobarbital protect against trimethyltin-induced neuropathology of limbic structures? Life Sci 36:851–858

    Article  PubMed  CAS  Google Scholar 

  120. Earley B, Biegon A, Leonard BE (1989) Quantitative autoradiographic analysis of muscarinic receptors and quantitative histochemistry of acetylcholinesterase in the rat brain after trimethyltin intoxication. Neurochem Int 15:475–483

    Article  PubMed  CAS  Google Scholar 

  121. O’Connell A, Earley B, Leonard BE (1994) Changes in muscarinic (M1 and M2 subtypes) and phencyclidine receptor density in the rat brain following trimethyltin intoxication. Neurochem Int 25:243–522

    Article  PubMed  Google Scholar 

  122. O’Connell A, Earley B, Leonard BE (1994) The neuroprotective effect of tacrine on trimethyltin induced memory and muscarinic receptor dysfunction in the rat. Neurochem Int 25:555–566

    Article  PubMed  Google Scholar 

  123. Earley B, Glennon M, Leonard BE, Junien JL (1995) Effects of JO 1784, a selective sigma ligand, on the autoradiographic localization of M1 and M2 muscarinic receptor subtypes in trimethyltin treated rats. Neurochem Int 26:559–570

    Article  PubMed  CAS  Google Scholar 

  124. O’Connell AW, Earley B, Leonard BE (1996) The sigma ligand JO 1784 prevents trimethyltin-induced behavioural and sigma-receptor dysfunction in the rat. Pharmacol Toxicol 78:296–302

    Article  PubMed  Google Scholar 

  125. van Waarde A, Ramakrishnan NK, Rybczynska AA, Elsinga PH, Ishiwata K, Nijholt IM, Luiten PG, Dierckx RA (2011) The cholinergic system, sigma-1 receptors and cognition. Behav Brain Res 221:543–554

    Article  PubMed  CAS  Google Scholar 

  126. Maurice T, Phan VL, Noda Y, Yamada K, Privat A, Nabeshima T (1999) The attenuation of learning impairments induced after exposure to CO or trimethyltin in mice by sigma (s) receptor ligands involves both s1 and s2 sites. Br J Pharmacol 127:335–342

    Article  PubMed  CAS  Google Scholar 

  127. Kim HC, Nabeshima T, Jhoo WK, Ko KH, Kim WK, Shin EJ, Cho M, Lee PH (2001) Anticonvulsant effects of new morphinan derivatives. Bioorg Med Chem Lett 11:1651–1654

    Article  PubMed  CAS  Google Scholar 

  128. Shin EJ, Nah SY, Kim WK, Ko KH, Jhoo WK, Lim YK, Cha JY, Chen CF, Kim HC (2005) The dextromethorphan analogue dimemorfan attenuates kainate-induced seizures via s1 receptor activation: comparison with the effects of dextromethorphan. Br J Pharmacol 144:908–918

    Article  PubMed  CAS  Google Scholar 

  129. Shin EJ, Nah SY, Chae JS, Bing G, Shin SW, Yen TP, Baek IH, Kim WK, Maurice T, Nabeshima T, Kim HC (2007) Dextromethorphan attenuates trimethyltin-induced neurotoxicity via sigma1 receptor activation in rats. Neurochem Int 50:791–799

    Article  PubMed  CAS  Google Scholar 

  130. DeHaven DL, Krigman MR, Mailman RB (1986) Temporal changes in dopaminergic and serotonergic function caused by administration of trimethyltin to adult rats. Neurobehav Toxicol Teratol 8:475–479

    PubMed  CAS  Google Scholar 

  131. Andersson H, Luthman J, Lindqvist E, Olson L (1995) Time-course of trimethyltin effects on the monoaminergic systems of the rat brain. Neurotoxicology 16:201–210

    PubMed  CAS  Google Scholar 

  132. Swartzwelder HS, Holahan W, Myers RD (1983) Antagonism by d-amphetamine of trimethyltin-induced hyperactivity evidence toward an animal model of hyperkinetic behavior. Neuropharmacology 22:1049–1054

    Article  PubMed  CAS  Google Scholar 

  133. Tamburella A, Micale V, Mazzola C, Salomone S, Drago F (2012) The selective norepinephrine reuptake inhibitor atomoxetine counteracts behavioral impairments in trimethyltin-intoxicated rats. Eur J Pharmacol 683:148–154

    Article  PubMed  CAS  Google Scholar 

  134. Zheng XY, Zhang HL, Luo Q, Zhu J (2011) Kainic acid-induced neurodegenerative model: potentials and limitations. J Biomed Biotechnol 2011:457079

    Article  PubMed  CAS  Google Scholar 

  135. Curia G, Longo D, Biagini G, Jones RS, Avoli M (2008) The pilocarpine model of temporal lobe epilepsy. J Neurosci Methods 172:143–157

    Article  PubMed  CAS  Google Scholar 

  136. Nilsberth C, Kostyszyn B, Luthman J (2002) Changes in APP, PS1 and other factors related to Alzheimer’s disease pathophysiology after trimethyltin-induced brain lesion in the rat. Neurotox Res 4:625–636

    Article  PubMed  CAS  Google Scholar 

  137. O’Connell AW, Strada O, Earley B, Leonard BE (1997) Altered expression of amyloid protein precursor mRNA in the rat hippocampus following trimethyltin intoxication: an in situ hybridization study. Neurochem Int 30:313–320

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Mr E. Guadagni for excellent technical support.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Michetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corvino, V., Marchese, E., Michetti, F. et al. Neuroprotective Strategies in Hippocampal Neurodegeneration Induced by the Neurotoxicant Trimethyltin. Neurochem Res 38, 240–253 (2013). https://doi.org/10.1007/s11064-012-0932-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0932-9

Keywords

Navigation