Skip to main content

Advertisement

Log in

Hippocampal Glutamate Level and Glutamate Aspartate Transporter (GLAST) are Up-Regulated in Senior Rat Associated with Isoflurane-Induced Spatial Learning/Memory Impairment

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Postoperative cognitive decline is a clinical concern especially for senior patients. It is generally recognized that glutamatergic system plays a crucial role in the physiopathologic process of neurocognitive deterioration. However, alterations of glutamatergic system in prolonged isoflurane-induced learning/memory decline are still unclear. This study investigates the question whether glutamate concentration and corresponding transporters or receptors display any alternations in aged rat suffering from isoflurane-induced learning/memory impairment. 111 male Sprague–Dawley rats (>18 months) were randomly divided into two main groups: hippocampal microdialysis group (n = 38) and western blotting group (n = 73). Each group was subdivided into three subgroups including (1) control subgroup (n = 6 and 10, receiving no behavioral trial, anesthesia or air exposure); (2) air-exposed subgroup (n = 7 and 15, receiving behavioral trial and air exposure but not anesthesia); (3) isoflurane anesthesia subgroup (n = 25 and 48, receiving both behavioral trial and anesthesia). The isoflurane-exposed rats were further divided into a learning/memory-impaired subgroup and a non-learning/memory-impaired subgroup according to their behavioral performance, which was measured using Morris water maze. Hippocampal glutamate concentrations in microdialysates were determined by high-performance liquid chromatography. Expression levels of GLAST, GLT-1, NMDAR1, NMDAR2A/B, AMPAR and tau in hippocampus were assessed via quantitative Western blotting. The incidences of learning/memory impairment of isoflurane-exposed rats in hippocampal microdialysis group and western blotting group were 12.0 (3/25) and 10.4 % (5/48) respectively. The intra-anesthesia hippocampal glutamate levels were significantly lower than those of non-anesthesized rats. The learning/memory-impaired rats showed a long-lasting increased glutamate level from 24 h after isoflurane exposure to the end of the study, but the other 22 isoflurane-exposed rats did not. The learning/memory-impaired subgroup displayed a significantly higher GLAST level than the other three subgroups (p = 0.026, 0.02 and 0.032 respectively). The expression levels of GLT-1, NMDAR1, NMDAR2A/B and AMPAR of every subgroup were comparable. We found a continuous raised hippocampal glutamate and an up-regulation of GLAST rather than GLT-1, NMDAR1, NMDAR2A/B, AMPAR or tau in hippocampus of aged rats associated with isoflurane-induced learning/memory impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Grape S, Ravussin P, Rossi A, Kern C, Steiner LA (2012) Postoperative cognitive dysfunction. Trends Anaesth Crit Care 2(2):98–103. doi:10.1016/j.tacc.2012.02.002

    Article  Google Scholar 

  2. Xie Z, Tanzi RE (2006) Alzheimer’s disease and postoperative cognitive dysfunction. Exp Gerontol 41(4):346–359. doi:10.1016/j.exger.2006.01.014

    Article  PubMed  CAS  Google Scholar 

  3. Fodale V, Santamaria LB, Schifilliti D, Mandal PK (2010) Anaesthetics and postoperative cognitive dysfunction: a pathological mechanism mimicking Alzheimer’s disease. Anaesthesia 65(4):388–395. doi:10.1111/j.1365-2044.2010.06244.x

    Article  PubMed  CAS  Google Scholar 

  4. Perouansky M (2008) General anesthetics and long-term neurotoxicity. Handb Exp Pharmacol 182:147–157. doi:10.1007/978-3-540-74806-9_7

    Google Scholar 

  5. Perouansky M (2007) Liaisons dangereuses? General anaesthetics and long-term toxicity in the CNS. Eur J Anaesthesiol 24(2):107–115. doi:10.1017/S0265021506001165

    Article  PubMed  CAS  Google Scholar 

  6. Moller JT, Cluitmans P, Rasmussen LS et al (1998) Long-term postoperative cognitive dysfunction in the elderly ISPOCD1 study: ISPOCD investigators—international study of post-operative cognitive dysfunction. Lancet 351(9106):857–861. doi:10.1016/S0140-6736(97)07382-0

    Article  PubMed  CAS  Google Scholar 

  7. Ancelin ML, de Roquefeuil G, Ledesert B, Bonnel F, Cheminal JC, Ritchie K (2001) Exposure to anaesthetic agents, cognitive functioning and depressive symptomatology in the elderly. Br J Psychiatry 178:360–366. doi:10.1192/bjp.178.4.360

    Article  PubMed  CAS  Google Scholar 

  8. Seymour DG, Severn AM (2009) Cognitive dysfunction after surgery and anaesthesia: what can we tell the grandparents? Age Ageing 38(2):147–150. doi:10.1093/ageing/afn289

    Article  PubMed  Google Scholar 

  9. Cooper JK, Mungas D (1993) Risk factor and behavioral differences between vascular and Alzheimer’s dementias: the pathway to endstage disease. J Geriatr Psychiatry Neurol 6(1):29–33. doi:10.1177/002383099300600105

    PubMed  CAS  Google Scholar 

  10. Fodale V, Ritchie K, Rasmussen LS, Mandal PK (2010) Anesthetics and Alzheimer’s disease: background and research. J Alzheimer’s Dis 22(suppl 3):1–3. doi:10.3233/JAD-2010-100809

    Google Scholar 

  11. Bohnen N, Warner MA, Kokmen E, Kurland LT (1994) Early and midlife exposure to anesthesia and age of onset of Alzheimer’s disease. Int J Neurosci 77(3–4):181–185. doi:10.3109/00207459408986029

    Article  PubMed  CAS  Google Scholar 

  12. Ritchie K, Carriere I, Ritchie CW, Berr C, Artero S, Ancelin ML (2010) Designing prevention programmes to reduce incidence of dementia: prospective e cohort study of modifiable risk factors. BMJ 341:c3885. doi:10.1136/bmj.c3885

    Article  PubMed  CAS  Google Scholar 

  13. Culley DJ, Baxter M, Yukhananov R, Crosby G (2003) The memory effects of general anesthesia persist for weeks in young and aged rats. Anesth Analg 96(4):1004–1009. doi:10.1213/01.ANE.0000052712.67573.12

    Article  PubMed  CAS  Google Scholar 

  14. Culley DJ, Baxter MG, Yukhananov R, Crosby G (2004) Long-term impairment of acquisition of a spatial memory task following isoflurane-nitrous oxide anesthesia in rats. Anesthesiology 100(2):309–314. doi:10.1097/00000542-200402000-00020

    Article  PubMed  CAS  Google Scholar 

  15. Culley DJ, Baxter MG, Crosby CA, Yukhananov R, Crosby G (2004) Impaired acquisition of spatial memory 2 weeks after isoflurane and isoflurane-nitrousoxide anesthesia in aged rats. Anesth Analg 99(5):1393–1397. doi:10.1213/01.ANE.0000135408.14319.CC

    Article  PubMed  CAS  Google Scholar 

  16. Xie Z, Dong Y, Maeda U, Moir RD, Xia W, Culley DJ et al (2007) The inhalation anesthetic isoflurane induces a vicious cycle of apoptosis and amyloid beta-protein accumulation. J Neurosci 27(6):1247–1254. doi:10.1523/JNEUROSCI.5320-06.2007

    Article  PubMed  CAS  Google Scholar 

  17. Papon M-A, Whittington RA, El-Khoury NB, Planel E (2010) Alzheimer’s disease and anesthesia. Front Neurosci 4:272. doi:10.3389/fnins.2010.00272

    Google Scholar 

  18. Mandal PK, Simplaceanu V, Fodale V (2010) Intravenous anesthetic diazepam does not induce amyloid betapeptide oligomerization but diazepam coadministered with halothane oligomerizes amyloid betapeptide:an NMR study. J Alzheimers Dis 20(1):127–134. doi:10.3233/JAD-2010-1350

    PubMed  CAS  Google Scholar 

  19. Mandal PK, Bhavesh NS, Chauhan VS, Fodale V (2010) NMR investigations of amyloid-β peptide interactions with propofol at clinically relevant concentrations with and without aqueous halothane solution. J Alzheimers Dis 21(4):1303–1309. doi:10.3233/JAD-2010-100396

    PubMed  CAS  Google Scholar 

  20. Mandal PK, Fodale V (2009) Isoflurane and desflurane at clinically relevant concentrations induce amyloid betapeptide oligomerization: an NMR study. Biochem Biophys Res Commun 379(3):716–720. doi:10.1016/j.bbrc.2008.12.092

    Article  PubMed  CAS  Google Scholar 

  21. Mandal PK, Pettegrew JW (2008) Abeta peptide interactions with isoflurane, propofol, thiopental and combined thiopental with halothane: a NMR study. Biochim Biophys Acta 1778(11):2633–2639. doi:10.1016/j.bbamem.2008.07.002

    Article  PubMed  CAS  Google Scholar 

  22. Dong Y, Zhang G, Zhang B et al (2009) The common inhalational anesthetic sevoflurane induces apoptosis and increases betaamyloid protein levels. Arch Neurol 66(5):620–631. doi:10.1001/archneurol.2009.48

    Article  PubMed  Google Scholar 

  23. Xie Z, Culley DJ, Dong Y et al (2008) The common inhalation anesthetic isoflurane induces caspase activation and increases amyloid betaprotein level in vivo. Ann Neurol 64(6):618–627. doi:10.1002/ana.21548

    Article  PubMed  CAS  Google Scholar 

  24. Planel E, Richter KE, Nolan CE et al (2007) Anesthesia leads to tau hyperphosphorylation through inhibition of phosphatase activity by hypothermia. J Neurosci 27(12):3090–3097. doi:10.1523/JNEUROSCI.4854-06.2007

    Article  PubMed  CAS  Google Scholar 

  25. Planel E, Bretteville A, Liu L (2009) Acceleration and persistence ofneurofibrillary pathology in a mouse model of tauopathy following anesthesia. FASEB J 23(8):2595–2604. doi:10.1096/fj.08-122424

    Article  PubMed  CAS  Google Scholar 

  26. Tan W, Cao X, Wang J, Lv H, Wu B, Ma H (2010) Tau hyperphosphorylation is associated with memory impairment after exposure to 1.5 % isoflurane without temperature maintenance in rats. Eur J Anaesthesiol 27(9):835–841. doi:10.1097/EJA.0b013e32833a6561

    Article  PubMed  CAS  Google Scholar 

  27. Run X, Liang Z, Zhang L, Iqbal K, Grundke-Iqbal I, Gong CX (2009) Anesthesia induces phosphorylation of tau. J Alzheimers Dis 16(3):619–626. doi:10.3233/JAD-2009-1003

    PubMed  CAS  Google Scholar 

  28. Holscher C, van Aalten L, Sutherland C (2008) Anaesthesia generates neuronal insulin resistance by inducing hypothermia. BMC Neurosci 9:100. doi:10.1186/1471-2202-9-100

    Article  PubMed  CAS  Google Scholar 

  29. Temple MD, O’Leary DM, Faden AI (2001) The role of glutamate receptors in the pathophysiology of traumatic CNS injury. In: Miller LP, Hayes RL (eds) Head trauma: basic, preclinical, and clinical directions, 4th edn. Wiley, New York, pp 87–113

    Google Scholar 

  30. Robert S (2005) Biology and human behavior: the neurological origins of individuality, 2nd edn. The Teaching Company, Chantilly

    Google Scholar 

  31. Rothstein JD, Dykes-Hoberg M, Pardo CA et al (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16(3):675–686. doi:10.1016/S0896-6273(00)80086-0

    Article  PubMed  CAS  Google Scholar 

  32. Maragakis NJ, Rothstein JD (2001) Glutamate transporters in neurologic disease. Arch Neurol 58(3):365–370. doi:10-1001/pubs.ArchNeurol.-ISSN-0003-9942-58-3-nbs00001

    Article  PubMed  CAS  Google Scholar 

  33. Rao VL, Dogan A, Bowen KK, Todd KG, Dempsey RJ (2001) Antisense knockdown of the glial glutamate transporter GLT-1 exacerbates hippocampal neuronal damage following traumatic injury to rat brain. Eur J Neurosci 13(1):119–128. doi:10.1111/j.1460-9568.2001.01367.x

    Article  PubMed  CAS  Google Scholar 

  34. Choi DW, Rothman SM (1990) The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu Rev Neurosci 13:171–182. doi:10.1146/annurev.ne.13.030190.001131

    Article  PubMed  CAS  Google Scholar 

  35. Lipton SA, Rosenberg PA (1994) Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med 330(9):613–622. doi:10.1056/NEJM199403033300907

    Article  PubMed  CAS  Google Scholar 

  36. Obrenovitch TP, Urenjak J (1997) Altered glutamatergic transmission in neurological disorders: from high extracellular glutamate to excessive synaptic efficacy. Prog Neurobiol 51(1):39–87. doi:10.1016/S0301-0082(96)00049-4

    Article  PubMed  CAS  Google Scholar 

  37. Scott HL, Pow DV, Tannenberg AE, Dodd PR (2002) Aberrant expression of the glutamate transporter excitatory amino acid transporter 1 (EAAT1) in Alzheimer’s disease. J Neurosci 22(3):RC206

    PubMed  Google Scholar 

  38. Lau A, Tymianski M (2010) Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch 460(2):525–542. doi:10.1007/s00424-010-0809-1

    Article  PubMed  CAS  Google Scholar 

  39. Platt SR (2007) The role of glutamate in central nervous system health and disease–a review. Vet J 173(2):278–286. doi:10.1016/j.tvjl.2005.11.007

    Article  PubMed  CAS  Google Scholar 

  40. Henneberry RC (1992) Cloning of the genes for excitatory amino acid receptors. BioEssays 14(7):465–471. doi:10.1002/bies.950140707

    Article  PubMed  CAS  Google Scholar 

  41. Haugeto O, Ullensvang K, Levy LM et al (1996) Brain glutamate transporter proteins form homomultimers. J Biol Chem 271(44):27715–27722. doi:10.1074/jbc.271.44.27715

    Article  PubMed  CAS  Google Scholar 

  42. Hertz L, Zielke HR (2004) Astrocytic control of glutamatergic activity: astrocytes as stars of the show. Trends Neurosci 27(12):735–743. doi:10.1016/j.tins.2004.10.008

    Article  PubMed  CAS  Google Scholar 

  43. Mitani A, Tanaka K (2003) Functional changes of glial glutamate transporter GLT-1 during ischemia: an in vivo study in the hippocampal CA1 of normal mice and mutant mice lacking GLT-1. J Neurosci 3(18):7176–7182

    Google Scholar 

  44. Ozawa S, Kamiya H, Tsuzuki K (1998) Glutamate receptors in the mammalian central nervous system. Prog Neurobiol 54(5):581–618. doi:10.1016/S0301-0082(97)00085-3

    Article  PubMed  CAS  Google Scholar 

  45. Parsons CG, Stoffler A, Danysz W (2007) Memantine: a NMDA receptor antagonist that improves memory by restoration of homeostasis in the glutamatergic system–too little activation is bad, too much is even worse. Neuropharmacology 53(6):699–723. doi:10.1016/j.neuropharm.2007.07.013

    Article  PubMed  CAS  Google Scholar 

  46. Francis PT (2005) The interplay of neurotransmitters in Alzheimer’s disease. CNS Spectr 10(11 Suppl 18):6–9

    PubMed  Google Scholar 

  47. Hynd MR, Scott HL, Dodd PR (2004) Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease. Neurochem Int 45(5):583–595. doi:10.1016/j.neuint.2004.03.007

    Article  PubMed  CAS  Google Scholar 

  48. Tannenberg RK, Scott HL, Westphalen RI, Dodd PR (2004) The identification and characterization of excitotoxic nerve-endings in Alzheimer disease. Curr Alzheimer Res 1(1):11–25

    Article  PubMed  CAS  Google Scholar 

  49. Francis PT (2003) Glutamatergic systems in Alzheimer’s disease. Int J Geriatr Psychiatry 18(Suppl 1):S15–S21. doi:10.1002/gps.934

    Article  PubMed  Google Scholar 

  50. Wenk GL (2006) Neuropathologic changes in Alzheimer’s disease: potential targets for treatment. J Clin Psychiatry 67(Suppl 3):3–7

    PubMed  CAS  Google Scholar 

  51. Jacob CP, Koutsilieri E, Bartl J et al (2007) Alterations in expression of glutamatergic transporters and receptors in sporadic Alzheimer’s disease. J Alzheimers Dis 11(1):97–116

    PubMed  CAS  Google Scholar 

  52. Carriedo SG, Yin HZ, Weiss JH (1996) Motor neurons are selectively vulnerable to AMPA/kainate receptor-mediated injury in vitro. J Neurosci 16(13):4069–4079

    PubMed  CAS  Google Scholar 

  53. Doble A (1999) The role of excitotoxicity in neurodegenerative disease: implications for therapy. Pharmacol Ther 81(3):163–221. doi:10.1016/S0163-7258(98)00042-4

    Article  PubMed  CAS  Google Scholar 

  54. Sattler R, Tymianski M (2001) Molecular mechanisms of glutamate receptor-mediated excitotoxic neuronal cell death. Mol Neurobiol 24(1–3):107–129. doi:10.1385/MN:24:1-3:107

    Article  PubMed  CAS  Google Scholar 

  55. Dubinsky JM (1993) Intracellular calcium levels during the period of delayed excitotoxicity. J Neurosci 13(2):623–631

    PubMed  CAS  Google Scholar 

  56. Nicotera P, Ankarcrona M, Bonfoco E, Orrenius S, Lipton SA (1997) Neuronal necrosis and apoptosis: two distinct events induced by exposure to glutamate or oxidative stress. Adv Neurol 72:95–101

    PubMed  CAS  Google Scholar 

  57. Zeron MM, Fernandes HB, Krebs C et al (2004) Potentiation of NMDA receptor-mediated excitotoxicity linked with intrinsic apoptotic pathway in YAC transgenic mouse model of Huntington’s disease. Mol Cell Neurosci 25(3):469–479. doi:10.1016/j.mcn.2003.11.014

    Article  PubMed  CAS  Google Scholar 

  58. Shehadeh J, Fernandes HB, Zeron Mullins MM et al (2006) Striatal neuronal apoptosis is preferentially enhanced by NMDA receptor activation in YAC transgenic mouse model of Huntington disease. Neurobiol Dis 21(2):392–403. doi:10.1016/j.nbd.2005.08.001

    Article  PubMed  CAS  Google Scholar 

  59. Tsien JZ, Huerta PT, Tonegawa S (1996) The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell 87(7):1327–1338. doi:10.1016/S0092-8674(00)81827-9

    Article  PubMed  CAS  Google Scholar 

  60. Shimizu E, Tang YP, Rampon C, Tsien JZ (2000) NMDA receptor-dependent synaptic reinforcement as a crucial process for memory consolidation. Science 290(5494):1170–1174. doi:10.1126/science.290.5494.1170

    Article  PubMed  CAS  Google Scholar 

  61. Izquierdo I, Medina JH (1993) Role of the amygdala, hippocampus and entorhinal cortex in memory consolidation and expression. Braz J Med Biol Res 26(6):573–589

    PubMed  CAS  Google Scholar 

  62. Jentsch JD, Roth RH (1999) The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 20(3):201–225. doi:10.1016/S0893-133X(98)00060-8

    Article  PubMed  CAS  Google Scholar 

  63. Bromley-Brits K, Deng Y, Song W (2011) Morris water maze test for learning and memory deficits in Alzheimer’s disease model mice. J Vis Exp 53:pii: 2920. doi:10.3791/2920

    Google Scholar 

  64. Brandeis R, Brandys Y, Yehuda S (1989) The use of the Morris water maze in the study of memory and learning. Int J Neurosci 48(1–2):29–69

    Article  PubMed  CAS  Google Scholar 

  65. Schutová B, Hrubá L, Pometlová M, Deykun K, Slamberová R (2009) Cognitive functions and drug sensitivity in adult male rats prenatally exposed to methamphetamine. Physiol Res 58(5):741–750

    PubMed  Google Scholar 

  66. Liu W, Xu J, Wang H et al (2012) Isoflurane-induced spatial memory impairment by a mechanism independent of amyloid-beta levels and tau protein phosphorylation changes in aged rats. Neurol Res 34(1):3–10. doi:10.1179/1743132811Y.0000000047

    Article  PubMed  CAS  Google Scholar 

  67. Cai GL, Jia JP (2007) Serum excitatory amino acids concentrations in patients with amnestic mild cognitive impairment or Alzheimer’s disease. Chin J Neurol 40(8):544–548

    CAS  Google Scholar 

  68. Shu SH, Fang C, Pan JH, Wang RM, Chai XQ, Xie ZQ (2010) Relationship between intracranial excitatory aminoacid levels and postoperative cognitive dysfunction in elderly patients after general anesthesia. Chin J Anesthesiol 30(3):290–293

    CAS  Google Scholar 

  69. Seo S, Liu P, Leitch B (2011) Spatial learning-induced accumulation of agmatine and glutamate at hippocampal CA1 synaptic terminals. Neuroscience 192:28–36. doi:10.1016/j.neuroscience.2011.07.007

    Article  PubMed  CAS  Google Scholar 

  70. Bullock R, Zauner A, Woodward JJ et al (1998) Factors affecting excitatory amino acid release following severe human head injury. J Neurosurg 89(4):507–518

    Article  PubMed  CAS  Google Scholar 

  71. Robertson CL, Bell MJ, Kochanek PM et al (2001) Increased adenosine in cerebrospinal fluid after severe traumatic brain injury in infants and children: association with severity of injury and excitotoxicity. Crit Care Med 29(12):2287–2293. doi:10.1097/00003246-200112000-00009

    Article  PubMed  CAS  Google Scholar 

  72. Yon JH, Carter LB, Reiter RJ, Jevtovic-Todorovic V (2006) Melatonin reduces the severity of anesthesia-induced apoptotic neurodegeneration in the developing rat brain. Neurobiol Dis 21(3):522–530. doi:10.1016/j.nbd.2005.08.011

    Article  PubMed  CAS  Google Scholar 

  73. Ma D, Williamson P, Januszewski A et al (2007) Xenon mitigates isoflurane-induced neuronal apoptosis in the developing rodent brain. Anesthesiology 106(4):746–753. doi:10.1097/01.anes.0000264762.48920.80

    Article  PubMed  CAS  Google Scholar 

  74. Lunardi N, Ori C, Erisir A, Jevtovic-Todorovic V (2010) General anesthesia causes long-lasting disturbances in the ultrastructural properties of developing synapses in young rats. Neurotox Res 17(2):179–188. doi:10.1007/s12640-009-9088-z

    Article  PubMed  CAS  Google Scholar 

  75. Jevtovic-Todorovic V (2011) Anesthesia and the developing brain: are we getting closer to understanding the truth? Curr Opin Anaesthesiol 24(4):395–399. doi:10.1097/ACO.0b013e3283487247

    Article  PubMed  Google Scholar 

  76. Li S, Mallory M, Alford M, Tanaka S, Masliah E (1997) Glutamate transporter alterations in Alzheimer disease are possibly associated with abnormal APP expression. J Neuropathol Exp Neurol 56(8):901–911

    Article  PubMed  CAS  Google Scholar 

  77. Scott HL, Tannenberg AE, Dodd PR (1995) Variant forms of neuronal glutamate transporter sites in Alzheimer’s disease cerebral cortex. J Neurochem 64(5):2193–2202. doi:10.1046/j.1471-4159.1995.64052193.x

    Article  PubMed  CAS  Google Scholar 

  78. Masliah E, Alford M, DeTeresa R, Mallory M, Hansen L (1996) Deficient glutamate transport is associated with neurodegeneration in Alzheimer’s disease. Ann Neurol 40(5):759–766. doi:10.1002/ana.410400512

    Article  PubMed  CAS  Google Scholar 

  79. Chen KH, Reese EA, Kim HW, Rapoport SI, Rao JS (2011) Disturbed neurotransmitter transporter expression in Alzheimer’s disease brain. J Alzheimers Dis 26(4):755–766. doi:10.3233/JAD-2011-110002

    PubMed  CAS  Google Scholar 

  80. Beschorner R, Simon P, Schauer N et al (2007) Reactive astrocytes and activated microglial cells express EAAT1, but not EAAT2, reflecting a neuroprotective potential following ischaemia. Histopathology 50(7):897–910. doi:10.1111/j.1365-2559.2007.02703.x

    Article  PubMed  CAS  Google Scholar 

  81. Arranz AM, Gottlieb M, Perez-Cerda F, Matute C (2010) Increased expression of glutamate transporters in subcortical white matter after transient focal cerebral ischemia. Neurobiol Dis 37(1):156–165. doi:10.1016/j.nbd.2009.09.019

    Article  PubMed  CAS  Google Scholar 

  82. Rothstein JD, Martin L, Levey AI, Dykes-Hoberg M, Jin L, Wu D, Nash N, Kuncl RW (1994) Localization of neuronal and glial glutamate transporters. Neuron 13(3):713–725. doi:10.1016/0896-6273(94)90038-8

    Article  PubMed  CAS  Google Scholar 

  83. Schmitt A, Asan E, Püschel B, Kugler P (1997) Cellular and regional distribution of the glutamate transporter GLAST in the CNS of rats: nonradioactive in situ hybridization and comparative immunocytochemistry. J Neurosci 17(1):1–10

    PubMed  CAS  Google Scholar 

  84. Torp R, Hoover F, Danbolt NC, Storm-Mathisen J, Ottersen OP (1997) Differential distribution of the glutamate transporters GLT1 and rEAAC1 in rat cerebral cortex and thalamus: an in situ hybridization analysis. Anat Embryol (Berl) 195(4):317–326. doi:10.1007/s004290050051

    Article  CAS  Google Scholar 

  85. Mennerick S, Dhond RP, Benz A et al (1998) Neuronal expression of the glutamate transporter GLT-1 in hippocampal microcultures. J Neurosci 18(12):4490–4499

    PubMed  CAS  Google Scholar 

  86. Mitrovic AD, Amara SG, Johnston GA, Vandenberg RJ (1998) Identification of functional domains of the human glutamate transporters EAAT1 and EAAT2. J Biol Chem 273(24):14698–14706. doi:10.1074/jbc.273.24.14698

    Article  PubMed  CAS  Google Scholar 

  87. Danbolt NC, Pines G, Kanner BI (1990) Purification and reconstitution of the sodium- and potassium-coupled glutamate transport glycoprotein from rat brain. Biochemistry 29:6734–6740. doi:10.1021/bi00480a025

    Article  PubMed  CAS  Google Scholar 

  88. Gottlieb M, Domercq M, Matute C (2000) Altered expression of the glutamate transporter EAAC1 in neurons and immature oligodendrocytes after transient forebrain ischemia. J Cereb Blood Flow Metab 20(4):678–687. doi:10.1097/00004647-200004000-00005

    Article  PubMed  CAS  Google Scholar 

  89. Karlsson Rose-Marie, Heilig Markus, Holmes Andrew (2008) Loss of glutamate transporter GLAST (EAAT1) causes locomotor hyperactivity and exaggerated responses to psychotomimetics: rescue by haloperidol and mGlu2/3 agonist. Biol Psychiatry 64(9):810–814. doi:10.1016/j.biopsych.2008.05.001

    Article  PubMed  CAS  Google Scholar 

  90. Dawson LA, Djali S, Gonzales C, Vinegra MA, Zaleska MM (2000) Characterization of transient focal ischemia-induced increases in extracellular glutamate and aspartate in spontaneously hypertensive rats. Brain Res Bull 53(6):767–776. doi:10.1016/S0361-9230(00)00363-4

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Our study was supported by National Natural Science Foundation of China (grant no. 30872425).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anshi Wu or Yun Yue.

Additional information

Xiangdong Qu and Chengshi Xu equal contribution to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 29 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qu, X., Xu, C., Wang, H. et al. Hippocampal Glutamate Level and Glutamate Aspartate Transporter (GLAST) are Up-Regulated in Senior Rat Associated with Isoflurane-Induced Spatial Learning/Memory Impairment. Neurochem Res 38, 59–73 (2013). https://doi.org/10.1007/s11064-012-0889-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0889-8

Keywords

Navigation