Skip to main content
Log in

Modulation of Antioxidant Enzyme Expression by PTU-Induced Hypothyroidism in Cerebral Cortex of Postnatal Rat Brain

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

This study aimed to elucidate the effect of 6-n-propylthiouracil (PTU)-induced hypothyroidism on oxidative stress parameters and expression of antioxidant enzymes in cerebral cortex of rat brain during postnatal development. A significant decrease in levels of lipid peroxidation and H2O2 were seen in 7 and 30 days old PTU-treated rats with respect to their controls. Significantly decreased activities of superoxide dismutase (SOD) and catalase (CAT) along with the translated products of SOD1 and SOD2 were observed in 7, 15 and 30 days old PTU-treated rats as compared to their respective controls. However, increase in translated product of CAT was seen in all age groups of PTU-treated rats. Glutathione peroxidase activity was decreased in 7 days and increased in 15 days old PTU-treated rats with respect to their control groups. Histological sections clearly show a decline in neuronal migration with neurons packed together in the hypothyroid group as compared to the control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Halliwell B, Gutteridge JMC (2001) Free radicals in biology and medicine, 3rd edn. Oxford University Press, New York

    Google Scholar 

  2. Hancock JT, Desikan R, Neill SJ (2001) Role of reactive oxygen species in cellsignaling pathways. Biochem Soc Trans 29:345–350

    Article  PubMed  CAS  Google Scholar 

  3. Rahaman SO, Ghosh S, Mohanakumar KP, Das S, Sarkar PK (2001) Hypothyroidism in the developing rat brain is associated with marked oxidative stress and aberrant intraneuronal accumulation of neurofilaments. Neurosci Res 40:273–279

    Article  PubMed  CAS  Google Scholar 

  4. Mogulkoc R, Baltaci AK, Aydin L, Oztekin E, Sivrikaya A (2005) The effect of thyroxine administration on lipid peroxidation in different tissues of rats with hypothyroidism. Acta Physiol Hung 92:39–46

    Article  PubMed  CAS  Google Scholar 

  5. Mogulkoc R, Baltaci AK, Oztekin E, Aydin L, Sivrikaya A (2006) Melatonin prevents oxidant damage in various tissues of rats with hyperthyroidism. Life Sci 13:311–315

    Article  Google Scholar 

  6. Venditti P, Di Meo S (2006) Thyroid hormone-induced oxidative stress. Cell Mol Life Sci 63:414–434

    Article  PubMed  CAS  Google Scholar 

  7. Das K, Chainy GBN (2004) Thyroid hormone influences antioxidant defense system in adult rat brain. Neurochem Res 29:1755–1766

    Article  PubMed  CAS  Google Scholar 

  8. Zoeller TR, Crofton KM (2005) Mode of action: developmental thyroid hormone insufficiency-neurological abnormalities resulting from exposure to propylthiouracil. Crit Rev Toxicol 35:771–781

    Article  PubMed  CAS  Google Scholar 

  9. Sahoo DK, Roy A, Bhanja S, Chainy GBN (2008) Hypothyroidism impairs antioxidant defence system and testicular physiology during development and maturation. Gen Comp Endocrinol 156:63–70

    Article  PubMed  CAS  Google Scholar 

  10. Bhanja S, Chainy GBN (2010) PTU-induced hypothyroidism modulates antioxidant defence status in the developing cerebellum. Int J Dev Neurosci 28:251–262

    Article  PubMed  CAS  Google Scholar 

  11. Jena S, Anand C, Chainy GBN, Dandapat J (2011) Induction of oxidative stress and inhibition of superoxide dismutase expression in rat cerebral cortex and cerebellum by PTU-induced hypothyroidism and its reversal by curcumin. Neurol Sci. doi:10.1007/s10072-011-0853-4

  12. Jena S, Chainy GBN, Dandapat J (2012) Modulation of renal antioxidant enzymes expression by PTU-induced hypothyroidism during postnatal development and maturation. Gen Comp Endocrinol 178:8–18

    Article  PubMed  CAS  Google Scholar 

  13. Oppenheimer JH, Schwartz HL (1997) Molecular basis of thyroid hormone-dependent brain development. Endocr Rev 18:462–475

    Article  PubMed  CAS  Google Scholar 

  14. Thompson CC, Potter GB (2000) Thyroid hormone action in neural development. Cereb Cortex 10:934–945

    Article  Google Scholar 

  15. Zoeller TR, Dowling ALS, Herzig CTA, Iannacone EA, Gauger KJ, Bansal R (2002) Thyroid hormone, brain development and the environment. Environ Health Perspect 110:355–361

    Article  PubMed  CAS  Google Scholar 

  16. Bernal J, Guadano-Ferraz A, Morte B (2003) Perspectives in the study of thyroid hormone action on brain development and function. Thyroid 13:1005–1012

    Article  PubMed  CAS  Google Scholar 

  17. Koibuchi N (2008) The role of thyroid hormone on cerebellar development. Cerebellum 7:530–533

    Article  PubMed  CAS  Google Scholar 

  18. Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cellsignaling. Am J Physiol Lung Cell Mol Physiol 279:L1005–L1028

    PubMed  CAS  Google Scholar 

  19. Ladenson PW, Kieffer JD, Farewell AP, Ridgway C (1986) Modulation of myocardial L-triiodothyronine receptors in normal hypothyroid and hyperthyroid rats. Metabolism 35:5–12

    Article  PubMed  CAS  Google Scholar 

  20. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 377:239–242

    Google Scholar 

  21. Pick E, Keisari Y (1981) Superoxide anion and hydrogen peroxide production by chemically elicited peritoneal macrophages-induction by multiple nonphagocytic stimuli. Cell Immunol 59:301–318

    Article  PubMed  CAS  Google Scholar 

  22. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissue by thiobarbituric acid reaction. Anal Biochem 95:352–358

    Article  Google Scholar 

  23. Cohen G, Dembiec D, Marcus J (1970) Measurement of catalase activity in tissue extracts. Anal Biochem 34:30–38

    Article  PubMed  CAS  Google Scholar 

  24. Aebi H (1974) Catalase. In: Bergmayer HU (ed) Methods of enzymatic analysis, vol II. Academic press, New York, pp 673–683

    Chapter  Google Scholar 

  25. Das K, Samanta L, Chainy GBN (2000) A modified spectrophotometric assay of superoxide dismutase using nitrite formation of superoxide radicals. Indian J Biochem Biophys 37:201–204

    CAS  Google Scholar 

  26. Paglia DE, Valentine WN (1967) Studies on quantitative and quantiyative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70:158–169

    PubMed  CAS  Google Scholar 

  27. Abercrombie M (1946) Estimation of nuclear population from microtome sections. Anatom Record 94:239–247

    Article  CAS  Google Scholar 

  28. Yen PM (2001) Physiological and molecular basis of thyroid hormone action. Physiol Rev 81:1097–1142

    PubMed  CAS  Google Scholar 

  29. Broedel O, Eravci M, Fuxius S, Smolarz T, Jeitner A, Grau H, Stoltenburg-Didinger G, Plueckhan H, Meinhold H, Baumgartner A (2003) Effects of hyper- and hypothyroidism on thyroid hormone concentrations in regions of the rat brain. Am J Physiol Endocrinol Metab 285:E470–E480

    PubMed  CAS  Google Scholar 

  30. Kundu S, Pramanik M, Roy S, De J, Biswas A, Ray AK (2006) Maintenance of brain thyroid hormone level during peripheral hypothyroid condition in adult rat. Life Sci 79:1450–1455

    Article  PubMed  CAS  Google Scholar 

  31. Hashimoto K, Curty FH, Borges PP, Lee CE, Abel ED, Elmquist JK, Cohen RN, Wondisford FE (2001) An unliganded thyroid hormone receptor causes severe neurological dysfunction. Proc Natl Acad Sci 98:3998–4003

    Article  PubMed  CAS  Google Scholar 

  32. Katyare SS, Bangur CS, Howland JL (1994) Is respiratory activity in the brain mitochondria responsive to thyroid hormone action? A critical reevaluation. Biochem J 302:857–860

    PubMed  CAS  Google Scholar 

  33. Chattopadhyay S, Sahoo DK, Subudhi U, Chainy GBN (2007) Differential expression profiles of antioxidant enzymes and glutathione redox status in hyperthyroid rats: a temporal analysis. Comp Biochem Physiol C 146:383–391

    CAS  Google Scholar 

  34. Dasgupta A, Das S, Sarkar PK (2005) Thyroid hormone stimulates gammaglutamyl transpeptidase in the developing rat cerebra and in astroglial cultures. J Neurosci Res 82:851–857

    Article  PubMed  CAS  Google Scholar 

  35. Dasgupta A, Das S, Sarkar PK (2007) Thyroid hormone promotes glutathione synthesis in astrocytes by up regulation of glutamate cysteine ligase through differential stimulation of its catalytic and modulator subunit mRNAs. Free Radic Biol Med 42:617–626

    Article  PubMed  CAS  Google Scholar 

  36. Ahmed OM, El-Gareib AW, El-bakry AM, Abd El-Tawab SM, Ahmed RG (2008) Ahmed thyroid hormones states and brain development interactions. Int J Devl Neurosci 26:147–209

    Article  CAS  Google Scholar 

  37. Asayama K, Dobashi K, Hayashibe H, Megata Y, Kato K (1987) Lipid peroxidation and free radical scavengers in thyroid dysfunction in the rat: a possible mechanism of injury to heart and skeletal muscle in hyperthyroidism. Endocrinology 121:2112–2118

    Article  PubMed  CAS  Google Scholar 

  38. Paller MS (1986) Hypothyroidism protects against free radical damage in ischemic acute renal failure. Kidney Int 29:1162–1166

    Article  PubMed  CAS  Google Scholar 

  39. Swaroop A, Ramasarma T (1985) Heat exposure and hypothyroid conditions decrease hydrogen peroxide generation in liver mitochondria. Biochem J 226:403–408

    PubMed  CAS  Google Scholar 

  40. Jena S, Chainy GBN (2011) Regulation of expression of antioxidant enzymes by vitamin E and curcumin in L-thyroxine induced oxidative stress in rat renal cortex. Mol Biol Rep 38:1047–1054. doi:10.1007/s11033-010-0201-4

    Article  PubMed  CAS  Google Scholar 

  41. Mogulkoc R, Baltaci AK, Oztekin E, Sivrikaya A, Aydin L (2006) Effects of hyperthyroidism induced by L-thyroxine administration on lipid peroxidation of various rat tissues. Acta Biol Hung 57:157–163

    Article  PubMed  CAS  Google Scholar 

  42. Koibuchi N, Chin WW (2000) Thyroid hormone action and brain development. Trends Endocrinol Metab 11:123–128

    Article  PubMed  CAS  Google Scholar 

  43. Bernal J, Nunez J (1995) Thyroid hormones and brain development. Eur J Endocrinol 133:390–398

    Article  PubMed  CAS  Google Scholar 

  44. Gilbert ME, Paczkowski C (2003) Propylthiouracil (PTU)-induced hypothyroidism in the developing rat impairs synaptic transmission and plasticity in the dentate gyrus of the adult hippocampus. Brain Res Dev Brain Res 145:19–29

    Article  PubMed  CAS  Google Scholar 

  45. Gilbert ME (2011) Impact of low-level thyroid hormone disruption induced by propylthiouracil on brain development and function. Toxicol Sci 124:432–445

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Shravani Bhanja and Srikanta Jena are very thankful to the DST and DBT, Government of India, respectively for their financial grants (DST grant No. SL/WOS-A/LS-179/2005 and DBT Ref. No. -JRF/05-06/123). Authors are also extremely grateful to Prof. G.B.N. Chainy, Head (former), Department of Biotechnology, Utkal University, Bhubaneswar, Odisha, India, for extending laboratory facilities and mentoring the authors throughout the tenure of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srikanta Jena.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhanja, S., Jena, S. Modulation of Antioxidant Enzyme Expression by PTU-Induced Hypothyroidism in Cerebral Cortex of Postnatal Rat Brain. Neurochem Res 38, 42–49 (2013). https://doi.org/10.1007/s11064-012-0885-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0885-z

Keywords

Navigation