Skip to main content

Advertisement

Log in

Extracellular Superoxide Dismutase Induced by Dopamine in Cultured Astrocytes

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Under some pathological conditions in brain, a large amount of superoxide anion (O2 ) is produced, causing various cellular damages. Among three isozymes of superoxide dismutase (SOD), extracellular (EC)-SOD should play a role to detoxify O2 in extracellular space; however, a little is known about EC-SOD in brain. Although dopamine (DA) stored in the synaptic vesicle is stable, the excess leaked DA is spontaneously oxidized to yield O2 and reactive DA quinones, causing damages of dopaminergic neurons. In the present study, we examined the effects of DA on SOD expression in cultured rat cortical astrocytes. By means of RT-PCR, all mRNA of three isozymes of SOD could be detected; however, only EC-SOD was increased by DA exposure for 24 h, dose-dependently. The expression of EC-SOD protein and the cell-surface SOD activity in astrocytes also increased with 100 μM DA exposure. The increase of EC-SOD mRNA by DA was inhibited by a DA transporter inhibitor, GBR12909, whereas it was not changed by DA receptor antagonists, SKF-83566 (D1) and haloperidol (D2). Furthermore, a monoamine oxidase inhibitor, pargyline, and antioxidants, N-acetyl-l-cysteine and glutathione, also did not affect the DA-induced expression of EC-SOD mRNA. On the other hand, an inhibitor of nuclear factor kappaB (NF-κB), ammonium pyrrolidine-1-carbodithioate, suppressed the DA-induced expression of EC-SOD mRNA. These results suggest that DA incorporated into the cells caused the induction of EC-SOD mRNA followed by the enhancements of EC-SOD protein level and the enzyme activity, and that NF-κB activation is involved in the mechanisms of the EC-SOD induction. The regulation of EC-SOD in astrocytes surrounding dopaminergic neurons may contribute to the defensive mechanism against oxidative stress in brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

APDC:

Ammonium pyrrolidine-1-carbodithioate

DA:

Dopamine

DAT:

DA transporter

H2DCF-DA:

2′,7′-Dichlorodihydrofluorescein diacetate

DMEM:

Dulbecco’s modified Eagle medium

DTPA:

Diethylenetriamine-N,N,N′,N″,N″-pentaacetic acid

FBS:

Fetal bovine serum

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

GSH:

Glutathione

HKR:

HEPES-buffered Krebs–Ringer solution

HPX:

Hypoxanthine

HRP:

Horseradish peroxidase

MAO:

Monoamine oxidase

MTT:

3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-tetrazolium bromide

NAC:

N-Acetyl-l-cysteine

NBT:

Nitrotetrazolium blue chloride

NF-κB:

Nuclear factor-kappaB

Nrf2:

NF-E2-related factor 2

O2 :

Superoxide anion

PBS:

Phosphate-buffered saline

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

WST-1:

Water soluble tetrazolium-1

XOD:

Xanthine oxidase

References

  1. McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055

    PubMed  CAS  Google Scholar 

  2. Bowling AC, Beal MF (1995) Bioenergetic and oxidative stress in neurodegenerative diseases. Life Sci 56(14):1151–1171

    Article  PubMed  CAS  Google Scholar 

  3. Chan PH, Chu L, Chen SF, Carlson EJ, Epstein CJ (1990) Reduced neurotoxicity in transgenic mice overexpressing human copper-zinc-superoxide dismutase. Stroke 21:80–82

    Google Scholar 

  4. Kawase M, Murakami K, Fujimura M, Morita-Fujimura Y, Gasche Y, Kondo T, Scott RW, Chan PH (1999) Exacerbation of delayed cell injury after transient global ischemia in mutant mice with CuZn superoxide dismutase deficiency. Stroke 30:1962–1968

    Article  PubMed  CAS  Google Scholar 

  5. Keller JN, Kindy MS, Holtsberg FW, St Clair DK, Yen H-C, Germeyer A, Steiner SM, Bruce-Keller AJ, Hutchins JB, Mattson MP (1998) Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J Neurosci 18(2):687–697

    PubMed  CAS  Google Scholar 

  6. Kondo T, Reaume AG, Huang T–T, Carlson E, Murakami K, Chen SF, Hoffman EK, Scott RW, Epstein CJ, Chan PH (1997) Reduction of CuZn-superoxide dismutase activity exacerbates neuronal cell injury and edema formation after transient focal cerebral ischemia. J Neurosci 17(11):4180–4189

    PubMed  CAS  Google Scholar 

  7. Li Y, Copin J-C, Reola LF, Calagui B, Gobbel GT, Chen SF, Sato S, Epstein CJ, Chan PH (1998) Reduced mitochondrial manganese-superoxide dismutase activity exacerbates glutamate toxicity in cultured mouse cortical neurons. Brain Res 814:164–170

    Article  PubMed  CAS  Google Scholar 

  8. Matsuyama T, Michishita H, Nakamura H, Tsuchiyama M, Shimizu S, Watanabe K, Sugita M (1993) Induction of copper-zinc superoxide dismutase in gerbil hippocampus after ischemia. J Cereb Blood Flow Met 13:135–144

    Article  CAS  Google Scholar 

  9. Murakami K, Kondo T, Kawase M, Li Y, Sato S, Chen SF, Chan PH (1998) Mitochondrial susceptibility to oxidative stress exacerbates cerebral infarction that follows permanent focal cerebral ischemia in mutant mice with manganese superoxide dismutase deficiency. J Neurosci 18(1):205–213

    PubMed  CAS  Google Scholar 

  10. Marklund SL (1984) Extracellular superoxide dismutase in human tissues and human cell lines. J Clin Invest 74(4):1398–1403

    Article  PubMed  CAS  Google Scholar 

  11. Ohe Y, Ishikawa K, Itoh Z, Tatemoto K (1996) Cultured leptomeningeal cells secrete cerebrospinal fluid proteins. J Neurochem 67(3):964–971

    Article  PubMed  CAS  Google Scholar 

  12. Fukui S, Ookawara T, Nawashiro H, Suzuki K, Shima K (2002) Post-ischemic transcriptional and translational responses of ec-sod in mouse brain and serum. Free Radical Biol Med 32(3):289–298

    Article  CAS  Google Scholar 

  13. Sheng H, Bart RD, Oury TD, Pearlstein RD, Crapo JD, Warner DS (1999) Mice overexpressing extracellular superoxide dismutase have increased resistance to focal cerebral ischemia. Neuroscience 88(1):185–191

    Article  PubMed  CAS  Google Scholar 

  14. Sheng H, Brady TC, Pearlstein RD, Crapo JD, Warner DS (1999) Extracellular superoxide dismutase deficiency worsens outcome from focal cerebral ischemia in the mouse. Neurosci Lett 267:13–16

    Article  PubMed  CAS  Google Scholar 

  15. Zaghloul N, Nasim M, Patel H, Codipilly C, Marambaud P, Dewey S, Schiffer WK, Ahmed M (2012) Overexpression of extracellular superoxide dismutase has a protective role against hyperoxia-induced brain injury in neonatal mice. FEBS J 279:871–881

    Article  PubMed  CAS  Google Scholar 

  16. Iitsuka I, Motoyoshi-Yamashiro A, Moriyama M, Kannan-Hayashi Y, Fujimoto Y, Takano K, Murakami K, Yoneda Y, Nakamura Y (2012) Extracellular superoxide dismutase in cultured astrocytes: decrease in cell-surface activity and increase in medium activity by lipopolysaccharide-stimulation. Neurochem Res (in press)

  17. Schroeter ML, Mertsch K, Giese H, Müller S, Sporbert A, Hickel B, Blasig IE (1999) Astrocytes enhance radical defence in capillary endothelial cells constituting the blood-brain barrier. FEBS Lett 449:241–244

    Article  PubMed  CAS  Google Scholar 

  18. Stewart VC, Stone R, Gegg ME, Sharpe MA, Hurst RD, Clark JB, Heales SJR (2002) Preservation of extracellular glutathione by an astrocyte derived factor with properties comparable to extracellular superoxide dismutase. J Neurochem 83:984–991

    Article  PubMed  CAS  Google Scholar 

  19. Wilson JX (1997) Antioxidant defense of the brain: a role for astrocytes. Can J Physiol Pharmacol 75:1149–1163

    Article  PubMed  CAS  Google Scholar 

  20. Cubells JF, Rayport S, Rajendran G, Sulzer D (1994) Methamphetamine neurotoxocity involves vacuolation of endocytic organelles and dopamine-dependent intracellular oxidative stress. J Neurosci 14(4):2260–2271

    PubMed  CAS  Google Scholar 

  21. Fuller RW, Hemrick-Luecke SK (1982) Further studies on the long-term depletion of striatal dopamine in iprindole-treated rats by amphetamine. Neuropharmacology 21(5):433–438

    Article  PubMed  CAS  Google Scholar 

  22. Jenner P (2003) Oxidative stress in Parkinson’s disease. Ann Neurol 53(Suppl 3):S26–S36 (discussion S36-38)

    Article  PubMed  CAS  Google Scholar 

  23. Miyazaki I, Asanuma M (2008) Dopaminergic neuron-specific oxidative stress caused by dopamine itself. Acta Med Okayama 62:141–150

    PubMed  CAS  Google Scholar 

  24. Graham DG (1978) Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones. Mol Pharmacol 14(4):633–643

    PubMed  CAS  Google Scholar 

  25. Berman SB, Zigmond MJ, Hastings TG (1996) Modification of dopamine transporter function: effect of reactive oxygen species and dopamine. J Neurochem 67(2):593–600

    Article  PubMed  CAS  Google Scholar 

  26. Spina MB, Cohen G (1989) Dopamine turnover and glutathione oxidation: implications for Parkinson disease. Proc Nat Acad Sci USA 86:1398–1400

    Article  PubMed  CAS  Google Scholar 

  27. Globus MY-T, Busto R, Dietrich WD, Martinez E, Valdes I, Ginsberg MD (1988) Intra-ischemic extracellular release of dopamine and glutamate is associated with striatal vulnerability to ischemia. Neurosci Lett 91:36–40

    Article  PubMed  CAS  Google Scholar 

  28. Takano K, Sugita K, Moriyama M, Hashida K, Hibino S, Choshi T, Murakami R, Yamada M, Suzuki H, Hori O, Nakamura Y (2011) A dibenzoylmethane derivative protects against hydrogen peroxide-induced cell death and inhibits lipopolysaccharide-induced nitric oxide production in cultured rat astrocytes. J Neurosci Res 89:955–965

    Article  PubMed  CAS  Google Scholar 

  29. Miyazaki I, Asanuma M, Kikkawa Y, Takeshima M, Murakami S, Miyoshi K, Sogawa N, Kita T (2011) Astrocyte-derived metallothionein protects dopaminergic neurons from dopamine quinone toxicity. Glia 59:435–451

    Article  PubMed  Google Scholar 

  30. Paz MA, Fluckiger R, Boak A, Kagan HM, Gallop PM (1991) Specific detection of quinoproteins by redox-cycling staining. J Biol Chem 266(2):689–692

    PubMed  CAS  Google Scholar 

  31. Miyazaki I, Asanuma M, Diaz-Corrales FJ, Miyoshi K, Ogawa N (2004) Direct evidence for expression of dopamine receptors in astrocytes from basal ganglia. Brain Res 1029:120–123

    Article  PubMed  CAS  Google Scholar 

  32. Youdim MBH, Bakhle YS (2006) Monoamine oxidase: isoforms and inhibitors in Parkinson’s disease and depressive illness. Br J Pharmacol 147:S287–S296

    Article  PubMed  CAS  Google Scholar 

  33. Takeda H, Inazu M, Matsuyama T (2002) Astroglial dopamine transport is mediated by norepinephrine transporter. Naunyn-Schmiedebergs Arch Pharmacol 366:620–623

    Article  PubMed  CAS  Google Scholar 

  34. Fattman CL, Schaefer LM, Oury TD (2003) Extracellular superoxide dismutase in biology and medicine. Free Radical Biol Med 35(3):236–256

    Article  CAS  Google Scholar 

  35. Hirrlinger J, Schulz JB, Dringen R (2002) Effects of dopamine on the glutathione metabolism of cultured astroglial cells: implications for Parkinson’s disease. J Neurochem 82:458–467

    Article  PubMed  CAS  Google Scholar 

  36. Schmidt J, Mertz K, Morgan JI (1999) Regulation of heme oxygenase-1 expression by dopamine in cultured C6 glioma and primary astrocytes. Mol Brain Res 73:50–59

    Article  PubMed  CAS  Google Scholar 

  37. Marklund SL (1990) Expression of extracellular superoxide dismutase by human cell lines. Biochem J 266:213–219

    PubMed  CAS  Google Scholar 

  38. Shih AY, Erb H, Murphy TH (2007) Dopamine activates Nrf2-regulated neuroprotective pathways in astrocytes and meningeal cells. J Neurochem 101:109–119

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a grant from the Smoking Research Foundation to Y.N. and by Grants in Aid for Scientific Research to Y.N., 24621008 and to M.M., 23580408 from the Ministry of Education, Science and Culture of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsura Takano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takano, K., Tanaka, N., Kawabe, K. et al. Extracellular Superoxide Dismutase Induced by Dopamine in Cultured Astrocytes. Neurochem Res 38, 32–41 (2013). https://doi.org/10.1007/s11064-012-0882-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0882-2

Keywords

Navigation