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Abstract Glioblastoma multiforme (GBM) is an extre-

mely malignant brain tumor for which current therapies do

little to remedy. Despite aggressive treatment with surgery,

radiation therapy, and chemotherapy, tumors inevitably

recur as a direct consequence of the infiltrative nature of

GBM. The poor prognosis of patients with GBM under-

scores the clear and urgent need for more precise and

potent therapies. Immunotherapy is emerging as a prom-

ising means to treat GBM based on the immune system’s

capacity to mediate tumor-specific cytotoxicity. In this

review, we will discuss the use of peptide vaccines for the

treatment of GBM. The simplicity of peptide vaccines and

their ability to elicit tumor antigen-specific immune

responses make them an invaluable tool for the study of

brain tumor immunotherapy.

Keywords Glioblastoma � EGFRvIII � Immunotherapy �
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Introduction

Glioblastoma multiforme (GBM) is the most common and

aggressive primary malignant brain tumor affecting adults. The

current standard of care for GBM includes maximal tumor

resection followed by external beam radiation therapy and

temozolomide (TMZ) chemotherapy. However, even with

treatment GBM is invariably fatal, with a median survival of

approximately 15 months [1]. Due to the imprecise nature of

standard of care modalities, healthy peritumoral tissue is subject

to collateral damage without complete elimination of the entire

tumor cell population. Even with extremely aggressive treat-

ment, such as the removal of an entire cerebral hemisphere [2],

GBM is far too invasive to be successfully treated using these

methods. Evidenced by the high rate of recurrence following

standard of care management, the eradication of the entire

malignant cell population is likely critical for the successful and

long-term treatment of GBM, given that residual cancer stem

cells are competent at repopulating new tumors [3].

In an effort to overcome the limitations of conventional

therapies, immunotherapy is being rigorously tested as a

means to treat GBM in light of the immune system’s capacity

for molecular-guided, cell-specific cytotoxicity. Of the var-

ious immunotherapeutic modalities that could be used for the

treatment of solid tumors, vaccines have garnered consid-

erable support, in part, based on the positive track record of

antiviral vaccines, a favorable safety profile, and ease of

administration [4]. This review will outline peptide vaccines

that are being investigated for the treatment of GBM.

A primer on peptide vaccines

A vaccine is a type of active immunotherapy that provokes

the immune system into acquiring long-term immunity
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against an antigen of interest. Fundamentally, this activity

is prompted by the administration of an immunogen in

conjunction with an adjuvant—an immunological stimu-

lator—thereby directing the activation of antigen-specific

lymphocytes. Vaccines have traditionally been used in a

prophylactic capacity; however, their ability to therapeu-

tically mediate antitumor immunity is now being appreci-

ated. Investigative cancer vaccines take many forms,

including autologous/allogeneic tumor cells, tumor lysates,

synthetic peptides, proteins, antigen-loaded dendritic cells,

‘‘naked’’ DNA, and recombinant viral vectors [4–6].

Peptide vaccines are comprised of *8–25 amino acids

that encompass an epitope within an antigenic target. To

enhance their immunogenicity, these short peptides are

often conjugated to a carrier protein, such as keyhole

limpet hemocyanin (KLH) and tetanus toxoid. Peptide

vaccines are appealing because they are relatively easy to

manufacture and store, and they do not require laborious

preparations that inconvenience other forms of cancer

vaccines. Additionally, peptide vaccines are more chemi-

cally defined than alternative vaccine conformations, thus

mitigating vaccine-to-vaccine variability [7].

Peptide vaccines are not well suited for all immune

responses. In general, secreted and extracellular antigens

are targeted by humoral immunity and intracellular anti-

gens by cell-mediated immunity, though there are excep-

tions. A humoral immune response is initiated though the

recognition of a conformational epitope on an antigen by a

B cell receptor, which promotes endocytosis and antigen

processing. Conformational epitopes are native structures

that arise through protein folding and are often composed

of discontinuous amino acids. Short peptides do not gen-

erally mimic these conformational epitopes and are,

therefore, not suitable for these purposes. Cell-mediated

immunity, on the other hand, relies on presentation of short

peptides in the context of major histocompatibility (MHC)

(Fig. 1). Peptide vaccines are ideal for eliciting cell-med-

iated immunity against an antigen in which there is a

known MHC-binding peptide sequence. However, due to

the highly polymorphic nature of human MHC genes, not

all patients will react similarly to a given epitope [7].

Immunotherapeutic targets

Tumors express an array of tumor-specific antigens (TSAs)

and tumor-associated antigens (TAAs) that can be exploited

as immunotherapeutic targets. TSAs are unique to tumor

cells and derive from genetic mutations or defective post-

transcriptional/translational processing. TAAs are aber-

rantly overexpressed proteins (e.g. EGFR) or ectopically-

expressed fetal-development (i.e. oncofetal), germ line-

restricted (i.e. cancer/testis), and differentiation-associated

proteins. TSAs arguably serve as better vaccine targets

compared to TAAs because of the potential expression of

TAAs on healthy cells. Immunological reactivity to normal,

‘‘self’’ antigens is prevented by various tolerance mecha-

nisms, including the establishment of immunosuppressive

regulatory T cells (Tregs) against ‘‘self’’ epitopes, the clonal

deletion of ‘‘self’’ reactive lymphocytes, and the induction of

‘‘self’’ reactive lymphocytes into a state of unresponsiveness

known as anergy. Consequently, the efficacy of a TAA-

targeting vaccine may be compromised as a result of the

deletion or suppression of TAA-cognate lymphocytes. Fur-

thermore, because the immune system boasts potent cyto-

toxic potential, autoimmunity is a major concern when

targeting antigens present on healthy cells. This is exem-

plified by studies demonstrating that experimental autoim-

mune encephalomyelitis can be induced through

immunizations with myelin basic protein, myelin oligo-

dendrocyte glycoprotein, or myelin proteolipid protein [8].

Peptide vaccines for GBM

GBM tumors exhibit profound genomic, transcriptomic,

and proteomic alterations that may be exploited for the

purposes of immunotherapy. Proteins frequently mutated

or atypically expressed in GBM include EGFR, NF1,

PDGFRA, PTEN, TERT, RB1, TP53, IDH1, PIK3CA and

PIK3R1 [9]. Human cytomegalovirus (hCMV) antigens

have also been shown to be uniquely present in GBM

tumor cells [10]. Despite the tens of thousands of tumor

antigens discovered in GBM [11], only a few have been

pursued as targets for peptide vaccines due to the lack of

conservation among GBM patients.

Fig. 1 Proteinaceous-antigen presentation and recognition by cells of

the adaptive immune system (graphic created using Inkscape 0.48)
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EGFRvIII vaccine: rindopepimut

Present in *10–64 % of adult GBMs, EGFRvIII is a

ligand-independent, constitutively active splice variant of

EGFR that has been shown to enhance tumor growth and

chemoresistance [9, 12, 13]. The coding sequence for

EGFRvIII, residing primarily on episomal bodies, encodes

a transcript devoid of exons 2-7 [14]. Consequently, a

novel glycine is introduced into the amino acid sequence at

the junction of exons 1 and 8 [15]. In light of its oncogenic

function, tumor-specific expression, and distinctiveness

from wild-type EGFR, EGFRvIII was quickly recognized

as an ideal candidate for immunotherapeutic targeting.

Rindopepimut is a peptide vaccine composed of a 14mer

peptide spanning the EGFRvIII-specific exon junction site

conjugated to the carrier protein KLH. Initially, rindop-

epimut was used as an immunogen for the development of

EGFRvIII-specific antibodies, which were shown to

mediate effective antitumor responses against EGFRvIII-

positive tumor cells when used in a passive immunother-

apeutic capacity [16]. Mice vaccinated with rindopepimut,

in combination with Freund’s complete adjuvant or Fre-

und’s incomplete adjuvant plus GM-CSF, developed an

EGFRvIII-specific humoral response that was capable of

suppressing tumor growth and statistically enhancing

median survival following intracerebral challenge with

EGFRvIII-positive tumor cells. However, despite a few

long term survivors, several mice succumbed to EGFRvIII-

negative escape tumors [17]. This phenomenon, known as

antigen escape, would later be revealed in clinical trials as

one of the most critical impediments to long term effective

treatment with rindopepimut.

Rindopepimut was shown to be generally well-tolerated

with minimal adverse effects in a Phase I trial, known as

VICTORI. In this study, newly diagnosed GBM patients

were vaccinated with rindopepimut-pulsed, monocyte-

derived dendritic cells. Immunological monitoring sug-

gested that most patients developed an EGFRvIII-specific

immune response [18]. To determine the safety and effi-

cacy of rindopepimut as a peptide vaccine for patients with

EGFRvIII-positive GBM, three Phase II trials were initi-

ated. In all three trials—ACTIVATE, ACT II and ACT

III—rindopepimut was administered with adjuvant GM-

CSF [19–21]. ACT II and ACT III evaluated rindopepimut/

GM-CSF vaccination in conjunction with TMZ mainte-

nance therapy based on earlier reports showing that TMZ-

induced lymphopenia enhanced immunotherapeutic effi-

cacy [22, 23]. The results from these trials further con-

firmed the safety of rindopepimut and demonstrated a

statistical increase in median progression-free (PFS) and

overall survival (OS) in vaccinated patients, compared to a

standard of care treated cohort (PFS = 6.4 months,

OS = 15.2 months) [19–21]. Consistent with histological

data from preclinical investigations, most patients unfor-

tunately succumbed to recurrent tumors that were devoid of

EGFRvIII expression. (See Table 1 for more information

on rindopepimut clinical trials).

Under the auspices of Celldex Therapeutics, Inc.,

enrollment is currently open for two rindopepimut clinical

trials: ReACT and ACT IV. ReACT is a non-pivotal Phase

II trial for patients with recurrent GBM, and will include a

group of relapsed patients that is refractory to treatment

with bevacizumab (anti-VEGF monoclonal antibody). In

addition to receiving bevacizumab, patients will be vacci-

nated with either rindopepimut/GM-CSF or KLH. ACT IV

is a Phase III trial that will be conducted at over 200

locations world-wide. Patients will receive either rindop-

epimut/GM-CSF or KLH, as well as TMZ maintenance

therapy at the standard dose.

IDH1 R132H vaccine

Isocitrate dehydrogenase 1 (IDH1) is a cytosolic enzyme

that is frequently mutated in gliomas [24]. The IDH1

R132H mutation, present in 5–12 % of GBMs, is typically

associated with secondary GBMs that affect young adults

[9, 24]. The R132H amino acid substitution alters the

catalytic site, preventing IDH1 from catalyzing the

NADP? dependent oxidative decarboxylation of isocitrate

to a-ketoglutarate (aKG) [25]. Alternatively, IDH1 R132H

consumes NADPH and aKG to produce the oncometabo-

lite 2-hydroxyglutrate (2HG) [25], which has been shown

to perturb protein and DNA methylation [26]. Wild-type

IDH1 also performs NADPH/CO2-dependent reductive

carboxylation of aKG to isocitrate (reverse reaction)—a

reaction that is implicated in fatty acid and cholesterol

biosynthetic pathways [27]. Lipogenic dysregulation pro-

moted by the inability of IDH1 R132H to execute this

function may underlie IDH1 R132H’s association with less

aggressive, secondary GBMs [27, 28].

A recent preclinical study demonstrated that vaccina-

tion of MHC-humanized (i.e. HLA-A*0201 HLA-

DRA*0101 HLA-DRB1*0101) mice with a peptide vac-

cine representing amino acids 123-142 (p123-142) of

IDH1 R132H was capable of suppressing the growth of an

IDH1 R132H-positive sarcoma. Consistent with the iden-

tification of MHC class II epitopes within p123-142, p123-

142 vaccinated mice possessed IDH1 R132H-reactive,

IFN-c-producing CD4 ? T cells. Supporting the contri-

bution of this arm of immunity, CD4 depletion diminished

vaccine-mediated tumor suppression [29]. Though these

results are encouraging, further studies are needed to

determine whether an IDH1 R132H vaccine is effective in

the context of a glioma, which do not generally express

MHC II [30].
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CMV vaccine: PEP-CMV

Human cytomegalovirus (hCMV) is a common herpes virus

that causes life threatening disease in infants and immuno-

compromised individuals. Approximately 50–80 % of

healthy individuals have been exposed to CMV, though

primary infection is generally asymptomatic. Once the

immune system suppresses the initial infection, CMV

becomes latent, commonly using myeloid cells as a reservoir

[31].

Though their role and origin remains controversial,

several hCMV proteins have been detected in GBM spec-

imens and not in normal tissues [32]. These proteins

include IE1, US28, pp65, gB, HCMV IL-10, and pp28 [32].

Due to their exclusivity in tumor cells, these antigens have

been exploited as immunotherapeutic targets. A peptide

cocktail containing class I and class II restricted epitopes

from CMV antigens, known as PEP-CMV, will soon be

investigated in a clinical trial known as PERFORMANCE.

Multiple GBM antigen vaccines

Due to the high rate of relapse encountered by vaccination

against a single tumor antigen, multiple tumor antigen-

targeting vaccines are likely required to combat the vast

antigenic heterogeneity present among cells within a tumor

population. The German company immatics Biotechnolo-

gies GmbH is currently investigating an 11 peptide GBM

vaccine—known as IMA950—that targets multiple high

frequency tumor antigens, which were revealed through

mass spectrometric analysis of MHC-complexed peptides

from 30 primary human GBM specimens. Nine of the

peptides bind to the common MHC I allele HLA-A*02, and

two of the peptides bind to various HLA-DR (MHC II)

alleles [33]. A Phase I trial conducted in the UK recently

met two primary endpoints for safety and immunogenicity,

demonstrating that *90 % of the patients responded to the

vaccine. An additional multiple tumor antigen-targeting

GBM vaccine, known as SL-701 by Stemline Therapeutics

Inc., will soon begin Phase II testing based on the recent

acceptance of an IND.

Immunopotentiation using adjuvants

Adjuvants are compounds that enhance immunogenicity.

The delivery of an antigen in the absence of an adjuvant

generally leads to tolerance; therefore, adjuvants are an

essential component of vaccine strategies. Peptide vaccines

for glioblastoma, such as rindopepimut and PEP-CMV, are

typically resuspended in water or saline and delivered with

the adjuvant GM-CSF, which has been shown to recruit

and activate antigen presenting cells [34]. One adjuvant

that is showing great promise with regard to cancer vac-

cines is dendritic cells—dubbed ‘‘nature’s adjuvant.’’ The

utility of dendritic cells as an adjuvant derives from their

capacity to provide the costimulation and immunostimu-

latory molecules needed to prime naı̈ve T cells. Numerous

studies have shown that autologous dendritic cells pulsed

with peptides or tumor lysate are capable of inducing

powerful antitumor responses and are well tolerated in

human subjects (reviewed in [35]). Furthermore, because

many traditional adjuvants exert their effects on dendritic

cells, dendritic cells may be treated with adjuvants ex vivo

prior to vaccination, thereby minimizing the risk of toxicity

associated with the direct delivery of adjuvants into a

patient. Because adjuvants play an integral role in the

immune response, meeting the demand for effective, yet

safe, adjuvants will be necessary for the progression of

cancer vaccines as a feasible treatment strategy.

Overcoming the challenges of tumor vaccines

Though cancer vaccines are demonstrably safe and effec-

tive, studies have shown that they are rarely curative. GBM

tumors have evolved certain mechanisms that allow them

to evade immunological attack, and these defense mecha-

nisms, by their very nature, impede the effectiveness of

cancer vaccines. For example, GBM cancer stem cells and

migrating glioma cells have been shown to lack expression

of MHC molecules [36, 37]. This behavior precludes

antigen presentation and prevents tumor antigen-cognate

lymphocytes from recognizing tumor cells in an MHC-

dependent manner. GBM tumors also mediate profound

immunosuppression. GBM-associated cancer stem cells

produce an arsenal of immunosuppressive molecules

including PD-L1, an inhibitor of T cell proliferation, and

the Treg-inducing cytokine TGF-b [38]. Furthermore, host-

induced immunosuppression at the GBM tumor microen-

vironment is coordinated by regulatory T cells (Tregs),

myeloid-derived suppressor cells, and type 2 microglia.

These cells have been shown to repress effector T cell

activity through direct cell-to-cell contact or by secreting

immunosuppressive mediators [38, 39]. The contribution of

these mechanisms to immunotherapeutic recalcitrance has

been demonstrated by studies showing that their inhibition

or manipulation leads to more effective antitumor immu-

nity [40–42]. However, uncovering clinically applicable

modalities that safely, specifically, and potently target

these mechanisms remains a challenge.

Current tumor vaccines are also encumbered by the vast

antigenic heterogeneity displayed among tumor cells. Both

EGFRvIII and IDH1 R132H frequently exhibit heteroge-

neous expression within GBM tumors [43, 44]. Conse-

quently, vaccination strategies targeting a single tumor

J Neurooncol (2015) 123:433–440 437

123



antigen commonly lead to the outgrowth of antigen-loss

escape variants, exemplified in clinical trials with rindop-

epimut. Due to the effort and cost associated with vaccine

development and clinical evaluation, peptide vaccines are

generally only practical for targeting common tumor anti-

gens, and exhaustive molecular examination of numerous

GBM specimens has revealed that only a few immu-

notherapeutically-feasible tumor antigens are widespread

and conserved [11, 45]. To cope with the unique antigenic

landscape of an individual tumor, dendritic cells—the most

potent antigen presenting cells—offer a powerful platform

for creating personalized and multivalent vaccines tailored

to an individual patient’s tumor. Methods for loading

dendritic cells with tumor antigen include total tumor RNA

transfection, fusion to tumor cells, and pulsation with

apoptotic tumor cells, tumor lysate, or synthetic peptides.

Several dendritic cell vaccines for the treatment of GBM

are currently under investigation in clinical trials and have

been reviewed elsewhere [6, 46, 47].

Conclusion

GBM is a devastating disease, for which very few treat-

ment options exist. Therapies that are traditionally used to

treat GBM are invasive, damaging to healthy tissue, and do

not provide long term relief; therefore, there is a clear and

urgent need for safer, more selective antitumor modalities.

Immunotherapy is emerging as a promising means to treat

malignant brain tumors. Particularly, cancer vaccines are

proving to be a minimally-invasive immunotherapeutic

strategy that is safe, selective, and sympathetic towards the

delicate nature of the central nervous system. The use of

peptide vaccines to target individual tumor antigens is a

logical approach to easily and effectively elicit antitumor

immunity; however, the resilience of cancer is reaffirmed

by the high incidence of antigen escape that generally

follows vaccination. Future cancer vaccines will likely

employ a personalized approach to target a vast array of

unique tumor antigens—a seemingly overwhelming task

for a peptide-based approach. Despite the apparent limi-

tations of peptide vaccines, they remain an essential tool

for the elucidation of brain tumor immunotherapy.
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