Skip to main content
Log in

Polymersomes, smaller than you think: ferrocene as a TEM probe to determine core structure

  • Brief Communication
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

By incorporating ferrocene into the hydrophobic membrane of PEG-b-PCL polymersome nanoparticles it is possible to selectively visualize their core using Transmission Electron Microscopy (TEM). Two different sizes of ferrocene-loaded polymersomes with mean hydrodynamic diameters of approximately 40 and 90 nm were prepared. Image analysis of TEM pictures of these polymersomes found that the mean diameter of the core was 4–5 times smaller than the mean hydrodynamic diameter. The values obtained also allow the surface diameter and internal volume of the core to be calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Banerjee T, Mitra S, Singh AK, Sharma RK, Maitra A (2002) Preparation, characterization and biodistribution of ultrafine chitosan nanoparticles. Int J Pharm 243(1–2):93–105

    Article  CAS  PubMed  Google Scholar 

  • Chithrani BD, Stewart J, Allen C, Jaffray DA (2009) Intracellular uptake, transport, and processing of nanostructures in cancer cells. Nanomedicine 5(2):118–127

    CAS  PubMed  Google Scholar 

  • Christian NA, Milone MC, Ranka SS, Li GZ, Frail PR, Davis KP, Bates FS, Therien MJ, Ghoroghchian PP, June CH, Hammer DA (2007) Tat-functionalized near-infrared emissive polymersomes for dendritic cell labeling. Bioconjug Chem 18(1):31–40

    Article  CAS  PubMed  Google Scholar 

  • Collins TJ (2007) ImageJ for microscopy. Biotechniques 43(1):25–30

    Article  PubMed  Google Scholar 

  • Discher BM, Won YY, Ege DS, Lee JCM, Bates FS, Discher DE, Hammer DA (1999) Polymersomes: tough vesicles made from diblock copolymers. Science 284(5417):1143–1146

    Article  CAS  PubMed  ADS  Google Scholar 

  • Gaumet M, Vargas A, Gurny R, Delie F (2008) Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur J Pharm Biopharm 69(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Gaumet M, Gurny R, Delie F (2009) Localization and quantification of biodegradable particles in an intestinal cell model: the influence of particle size. Eur J Pharm Sci 36(4–5):465–473

    Article  CAS  PubMed  Google Scholar 

  • Ghoroghchian PP, Li GZ, Levine DH, Davis KP, Bates FS, Hammer DA, Therien MJ (2006a) Bioresorbable vesicles formed through spontaneous self-assembly of amphiphilic poly(ethylene oxide)-block-polycaprolactone. Macromolecules 39(5):1673–1675

    Article  CAS  ADS  Google Scholar 

  • Ghoroghchian PP, Lin JJ, Brannan AK, Frail PR, Bates FS, Therien MJ, Hammer DA (2006b) Quantitative membrane loading of polymer vesicles. Soft Matter 2(11):973–980

    Article  CAS  Google Scholar 

  • Halperin A (1999) Polymer brushes that resist adsorption of model proteins: design parameters. Langmuir 15(7):2525–2533

    Article  CAS  Google Scholar 

  • Letchford K, Burt H (2007) A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur J Pharm Biopharm 65(3):259–269

    Article  CAS  PubMed  Google Scholar 

  • Lomas H, Canton I, MacNeil S, Du J, Armes SP, Ryan AJ, Lewis AL, Battaglia G (2007) Biomimetic pH sensitive polymersomes for efficient DNA encapsulation and delivery. Adv Mater 19(23):4238–4243

    Article  CAS  Google Scholar 

  • Meng FH, Hiemstra C, Engbers GHM, Feijen J (2003) Biodegradable polymersomes. Macromolecules 36(9):3004–3006

    Article  CAS  ADS  Google Scholar 

  • Moghimi SM (1995a) Exploiting bone-marrow microvascular structure for drug-delivery and future therapies. Adv Drug Deliv Rev 17(1):61–73

    Article  CAS  Google Scholar 

  • Moghimi SM (1995b) Mechanisms of splenic clearance of blood-cells and particles—towards development of new splenotropic agents. Adv Drug Deliv Rev 17(1):103–115

    Article  CAS  Google Scholar 

  • Park IK, Lasiene J, Chou SH, Horner PJ, Pun SH (2007) Neuron-specific delivery of nucleic acids mediated by Tet(1)-modified poly(ethylenimine). J Gene Med 9(8):691–702

    Article  CAS  PubMed  Google Scholar 

  • Roy S, Johnston AH, Newman TA, Glueckert R, Dudas J, Bitsche M, Corbacella E, Rieger G, Martini A, Schrott Fischer A (2010) Cell-specific targeting in the mouse inner ear using nanoparticles conjugated with a neurotrophin derived peptide ligand: potential tool for drug delivery. Int J Pharm (in press). doi:10.1016/j.ijpharm.2010.02.003

  • Zhou W, Feijen J (2008) Biodegradable polymersomes for controlled drug release. J Control Release 132(3):e35–e36

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by European Community; Grant number: NMP4-CT-2006-026556 Integrated EU project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Johnston.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnston, A.H., Dalton, P.D. & Newman, T.A. Polymersomes, smaller than you think: ferrocene as a TEM probe to determine core structure. J Nanopart Res 12, 1997–2001 (2010). https://doi.org/10.1007/s11051-010-9886-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-9886-5

Keywords

Navigation