Skip to main content
Log in

Facile graft polystyrene onto multi-walled carbon nanotubes via in situ thermo-induced radical polymerization

  • Brief Communication
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A facile procedure was developed for the grafting of polystyrene onto the surfaces of multi-walled carbon nanotubes (MWNTs) via the in situ thermo-induced bulk radical polymerization of styrene at the different polymerizing temperatures, in the presence of MWNTs without any initiator added. The grafting products were validated by the dispersibility, TEM, TGA, FT-IR, and Raman analysis. The TGA results also showed the lower polymerizing temperature was propitious to the free radical addition reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Ajayan PM (1999) Nanotubes from carbon. Chem Rev 99(7):1787–1799

    Article  PubMed  CAS  Google Scholar 

  • Arvray S, Derycke V, Goffman M, Filoramo A, Jost O, Bourgoin JP (2005) Chemical optimization of self-assembled carbon nanotube transistors. Nano Lett 5(3):451–455

    Article  Google Scholar 

  • Bahr JL, Tour JM (2001) Highly functionalized carbon nanotubes using in situ generated diazonium compounds. Chem Mater 13(11):3823–3824

    Article  CAS  Google Scholar 

  • Baskaran D, Dunlap JR, Mays JM, Bratcher MS (2005) Grafting efficiency of hydroxy-terminated poly(methyl methacrylate) with multiwalled carbon nanotubes. Macromol Rapid Commun 26(6):481–486

    Article  CAS  Google Scholar 

  • Chen XH, Chen CS, Chen Q, Cheng FQ, Zhang G, Chen ZZ (2002) Non-destructive purification of multi-walled carbon nanotubes produced by catalyzed CVD. Mater Lett 57(3):734–738

    Article  CAS  Google Scholar 

  • Choi HJ, Zhang K, Lim JY (2007) Multi-walled carbon nanotube/polystyrene composites prepared by in-situ bulk sonochemical polymerization. J Nanosci Nanotechnol 7(10):3400–3403

    Article  PubMed  CAS  Google Scholar 

  • Dyke CA, Tour JM (2003) Unbundled and highly functionalized carbon nanotubes from aqueous reactions. Nano Lett 3(9):1215–1218

    Article  CAS  Google Scholar 

  • Falvo MR, Clary GJ, Taylor RM, Chi V, Brooks FP, Washburn S (1997) Bending and buckling of carbon nanotubes under large strain. Nature 389(6651):582–584

    Article  PubMed  CAS  Google Scholar 

  • Hemenick CM, Lawson G, Adronov A (2007) Polymer grafting of carbon nanotubes using living free-radical polymerization. Polym Rev 47(2):265–290

    Article  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58

    Article  ADS  CAS  Google Scholar 

  • Jun SC, Choi JH, Cha SN, Baik CW, Lee S, Kim HJ, Hone J, Kim JM (2007) Radio-frequency transmission characteristics of a multi-walled carbon nanotube. Nanotechnology 18(25):255701

    Article  ADS  Google Scholar 

  • Kim JM, Han IT, Jin YW, Choi JH, Lee JH, Jung JE, Park YJ, Chung DS, Park SH, Lee HW (2004) The effect of structural change and Ni doping on hydrogen storage properties of carbon nanotubes. JOM 56(11):164

    Google Scholar 

  • Kim ST, Lim JY, Park BJ, Choi HJ (2007) Dispersion-polymerized carbon nanotube/ poly(methyl methacrylate) composite particles and their electrorheological characteristics. Macromol Chem Phys 208(5):514–519

    Article  CAS  Google Scholar 

  • Kukovecz A, Kramberger C, Georgakilas V, Prato M, Kuzmany H (2002) A detailed Raman study on thin single-wall carbon nanotubes prepared by the HiPCO process. Eur Phys J B 28(2):223–230

    Article  ADS  CAS  Google Scholar 

  • Liu P (2005) Modifications of carbon nanotubes with polymers. Eur Polym J 41(11):2693–2703

    Article  CAS  Google Scholar 

  • Liu J, Rinzler AG, Dai H, Hafner JH, Bradley RK, Boul PJ, Shelimo K, Huffman CB, Rodriguez-Macias F, Shon YS, Lee TR, Colbert DT, Smalley RE (1998) Fullerene pipes. Science 280(5367):1253–1256

    Article  PubMed  CAS  Google Scholar 

  • Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39(16):5194–5205

    Article  CAS  Google Scholar 

  • Odom TW, Huang JL, Kim P, Lieber CM (1998) Atomic structures and electronic properties of single-walled carbon nanotubes. Nature 391(6662):62–64

    Article  CAS  Google Scholar 

  • Park SJ, Cho MS, Lim ST, Choi HJ, Jhon MS (2003) Synthesis and dispersion characteristics of multi-walled carbon nanotube composites with poly(methyl methacrylate) prepared by in-situ bulk polymerization. Macromol Rapid Commun 24(18):1070–1073

    Article  CAS  Google Scholar 

  • Petrov P, Lou XD, Pagnoulle C, Jerme C, Calberg C, Jerome R (2004) Functionalization of multi-walled carbon nanotubes by electrografting of polyacrylonitrile. Macromol Rapid Commun 25(10):987–990

    Article  CAS  Google Scholar 

  • Sinha N, Ma JZ, Yeow JT (2006) Carbon nanotube-based sensors. J Nanosci Nanotechnol 6(3):573–590

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Fu F, Lin Y, Huang W (2002) Functionalized carbon nanotubes: properties and applications. Acc Chem Res 35(12):1096–1104

    Article  PubMed  CAS  Google Scholar 

  • Sung JH, Kim HS, Jin HJ, Choi HJ, Chin IJ (2004) Nanofibrous membranes prepared by multiwalled carbon nanotube/poly(methyl methacrylate) composites. Macromolecules 37(26):9899–9902

    Article  CAS  Google Scholar 

  • Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106(3):1105–1136

    Article  PubMed  CAS  Google Scholar 

  • Xu HX, Wang XB, Zhang YF, Liu SY (2006) Single-step in situ preparation of polymer-grafted multi-walled carbon nanotube composites under 60Co γ-ray irradiation. Chem Mater 18(13):2929–2934

    Article  CAS  Google Scholar 

  • Yan YH, Chan-Park MB, Zhou Q, Li CM, Yue CY (2005) Functionalization of carbon nanotubes by argon plasma-assisted ultraviolet grafting. Appl Phys Lett 87(21):213101

    Article  Google Scholar 

  • Yang YK, Xie XL, Wu JG, Yang ZF, Wang XT, Mai YW (2006) Multiwalled carbon nanotubes functionalized by hyperbranched poly(urea-urethane)s by a one-pot polycondensation. Macromol Rapid Commun 27(19):1695–1701

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, P. Facile graft polystyrene onto multi-walled carbon nanotubes via in situ thermo-induced radical polymerization. J Nanopart Res 11, 1011–1016 (2009). https://doi.org/10.1007/s11051-008-9563-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-008-9563-0

Keywords

Navigation