Skip to main content
Log in

Influence of the particle size distribution on the thermal conductivity of nanofluids

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In a previous study, we have obtained an equation to predict the thermal conductivity of nanofluids containing nanoparticles with conductive interface. The model is maximal particle packing dependent. In this study, the maximal packing is obtained as a function of the particle size distribution, which is the Gamma distribution. The thermal conductivity enhancement depends on the averaged particle size. Discussion concerning the influence of the suspension pH on the particle packing is made. The proposed model is evaluated using number of sets from the published experimental data to the thermal conductivity enhancement for different nanofluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bouclé J, Herlin-Boime N, Kassiba A (2005) Influence of silicon and carbon excesses on the aqueous dispersion of SiC nanocrystals for optical application. J Nanopart Res 7:275–285. doi:10.1007/s11051-005-3477-x

    Article  Google Scholar 

  • Chang H, Tsung TT, Chen LC, Jwo CS, Tsung JW, Lu YC (2005) The electrochemical properties of SiC nanoparticle suspension. J Mater Eng Perform 14(2):158–162. doi:10.1361/10599490523256

    Article  CAS  Google Scholar 

  • Chang H, Jwo CS, Fan PS, Pai SH (2007) Process optimization and material properties for nanofluid manufacturing. Int J Adv Manuf Technol 34:300–306. doi:10.1007/s00170-006-0597-0

    Article  Google Scholar 

  • Chen G, Yu W, Singh D, Cookson D, Routbort J (2008) Application of SAXS to the study of particle size-dependent thermal conductivity in silica nanofluids. J Nanopart Res. doi:10.1007/s11051-007-9347-y

  • Chon CH, Kihm KD (2005) Thermal conductivity enhancement of nanofluids by Brownian motion. Trans ASME J Heat Transf 127:810. doi:10.1115/1.2033316

    Article  Google Scholar 

  • Das SK, Putra N, Thiesen P, Roetzel W (2003) Temperature dependent thermal conductivity enhancement nanofluids. J Heat Transf 125:567–574

    Article  CAS  Google Scholar 

  • Feng Y, Yu B, Feng K, Xu P, Zou M (2008) Thermal conductivity of nanofluids and size distribution of nanoparticles by Monte Carlo simulation. J Nanopart Res. doi:10.1007/s11051-008-9363-6

  • Gnedenko BV (1954) Course on the theory of probabilities. Gostehisdat, Moskow, p 312 (in Russian)

    Google Scholar 

  • Hadjov K (2008) Modified self-consistent scheme to predict the thermal conductivity of nano-fluids. Second International Congress on Automotive Safety and Environment, 23–25 October 2008, Craiova, Romania

  • Jeulin D (2001) Caractérisation morphologique et modèles de structures aléatoires in Homo-généisation en mécanique des matériaux 1, Bornert M, Bretheau T, Gilormini P (dir.). Hermes Science, France, p 255

  • Johnston PR (1998) Revisiting the most probable pore-size distribution in filter media: the gamma distribution. Filtr Sep 35(3):287–292. doi:10.1016/S0015-1882(98)90341-X

    Article  Google Scholar 

  • Karthikeyan NR, Philip J, Raj B (2008) Effect of clustering on the thermal conductivity of nanofluids. Mater Chem Phys 109(1):50–55. doi:10.1016/j.matchemphys.2007.10.029

    Article  CAS  Google Scholar 

  • Prakash M, Giannelis EP (2007) Mechanism of heat transport in nanofluids. J Comput Aided Mater Des 14:109–117. doi:10.1007/s10820-006-9025-x

    Article  ADS  CAS  Google Scholar 

  • Saltiel C, Chen Q, Manickavasagam S, Schadler LS, Siegel RW, Menguc MP (2004) Identification of the dispersion behaviour of surface treated nanoscale powders. J Nanopart Res 6:35–46. doi:10.1023/B:NANO.0000023206.45991.dc

    Article  CAS  Google Scholar 

  • Tilaki RM, Iraji zad A, Mahdavi SM (2007) The effect of liquid environment on size and aggregation of gold nanoparticles prepared by pulsed laser ablation. J Nanopart Res 9:853–860. doi:10.1007/s11051-006-9143-0

    Article  CAS  Google Scholar 

  • Wang BX, Zhou LP, Peng XF (2003) A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. Int J Heat Mass Transf 46:2665–2672. doi:10.1016/S0017-9310(03)00016-4

    Article  MATH  CAS  Google Scholar 

  • Xiang QW, Mujumdar AS (2007) Heat transfer characteristics of nanofluids: a review. Int J Therm Sci 46:1–19. doi:10.1016/j.ijthermalsci.2006.06.010

    Article  Google Scholar 

  • Xie H, Wang J, Xi T, Liu Y, Ai F, Wu Q (2002) Thermal conductivity enhancement of suspensions containing nanosized alumina particles. J Appl Phys 9(7):4568–4572. doi:10.1063/1.1454184

    Article  ADS  Google Scholar 

  • Yu BM, Zou MQ, Feng YJ (2005) Permeability of fractal porous media by Monte Carlo simulations. Int J Heat Mass Transf 48(13):2787–2794. doi:10.1016/j.ijheatmasstransfer.2005.02.008

    Article  Google Scholar 

  • Zhang X, Gu H, Fujii M (2006) Experimental study on the effective thermal conductivity and thermal diffusivity of nanofluids. Int J Thermophys 27(2):569–580. doi:10.1007/s10765-006-0054-1

    Article  Google Scholar 

Download references

Acknowledgement

The authors greatly appreciate the financial support from the AUF under project No 6316 PS 821/2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. B. Hadjov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hadjov, K.B., Dontchev, D.P. Influence of the particle size distribution on the thermal conductivity of nanofluids. J Nanopart Res 11, 1713–1718 (2009). https://doi.org/10.1007/s11051-008-9539-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-008-9539-0

Keywords

Navigation