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Abstract This paper focuses on the application of hp

hierarchic genetic strategy (hp–HGS) for solution of a

challenging problem, the inversion of 3D direct current

(DC) resistivity logging measurements. The problem under

consideration has been formulated as the global optimiza-

tion one, for which the objective function (misfit between

computed and reference data) exhibits multiple minima. In

this paper, we consider the extension of the hp–HGS

strategy, namely we couple the hp–HGS algorithm with a

gradient based optimization method for a local search.

Forward simulations are performed with a self-adaptive hp

finite element method, hp–FEM. The computational cost of

misfit evaluation by hp–FEM depends strongly on the

assumed accuracy. This accuracy is adapted to the tree of

populations generated by the hp–HGS algorithm, which

makes the global phase significantly cheaper. Moreover,

tree structure of demes as well as branch reduction and

conditional sprouting mechanism reduces the number of

expensive local searches up to the number of minima to be

recognized. The common (direct and inverse) accuracy

control, crucial for the hp–HGS efficiency, has been

motivated by precise mathematical considerations.

Numerical results demonstrate the suitability of the pro-

posed method for the inversion of 3D DC resistivity log-

ging measurements.

Keywords Hierarchic genetic strategy � Inverse

problem � Hybrid method

1 Introduction

To estimate the subsurface electrical properties, it is cus-

tomary to record resistivity measurements using logging

instruments that move along a borehole axis. These

instruments are equipped with several transmitter elec-

trodes, whose emitted signal is recorded by the receiver

electrodes that are also located along the tool.

Logging instruments are designed in such a way that the

voltage combination measured at receivers depends on the

formation’s electrical conductivity. Thus, logging instru-

ments are intended to estimate properties (electrical con-

ductivity) of the sub-surface material. The ultimate goal is

to identify and characterize hydrocarbon (oil and gas)

bearing formations. In order to design better logging

instruments as well as for improving the interpretation of

the recorded measurements, computer simulations of

resistivity logging measurements are essential and widely

used in many geophysical applications such as hydrocarbon

(oil and gas) exploration.

In this paper, we focus on borehole logging devices

operating of very low frequencies (close to zero), which are

numerically modeled as zero-frequency direct current

(DC). We perform simulations of 3D resistivity measure-

ments in deviated wells, with an angle between the
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borehole and formation layers below 90�. We consider two

types of problems: forward and inverse. The former con-

sists of finding the voltage for a certain position of trans-

mitter and receiver electrodes given known resistivities of

formation layers. A series of forward problems for con-

secutive positions of electrodes provides a sequence of

solutions forming a logging curve. In the inverse problem,

formalized as a global optimization one, we are given a

reference logging curve and seek for parameters (resistiv-

ities of formation layers) that would result in a similar

curve.

There exist a plethora of numerical simulation methods

developed to improve the simulation of forward resistivity

measurements (i.e. Avdeev et al. 2002; Davydycheva et al.

2003; Druskin et al. 1999; Newman and Alumbaugh 2002;

Pardo et al. 2008; Wang and Fang 2001; Zhang et al. 1995;

Wang and Signorelli 2004). Since each simulation requires

solution of a partial differential equation in 3D, the com-

putational cost associated to the solution of a forward

problem is elevated. In order to minimize such cost without

compromising the accuracy, we employ a forward sol-

ver (Pardo et al. 2008) based on a combination of a Fourier

series expansion in a non-orthogonal system of coordinates

with a 2D self-adaptive hp goal-oriented finite element

method (hp–FEM) (see Pardo et al. 2006a, c, 2007). This

Fourier-finite-element method was formulated and applied

to direct and alternating current resistivity logging prob-

lems, and it enabled fast and accurate simulations of

resistivity measurements in deviated wells.

When dealing with inverse problems, several challenges

appear. First, these problems are often ill-conditioned and a

small change in parameters may cause a huge difference in

results. Moreover, they may have a non-unique solution.

Additionally, the appearance of multiple minima (mul-

timodality) may make the search of the global optimum

difficult.

The inverse problem under consideration (inversion of

3D DC resistivity logging measurement) is much less

sensitive to the conductivities of layers saturated by oil or

gas than to the conductivities of others surrounding layers

e.g., rock, sand (see Szeliga 2013). Moreover, the measured

response from layers saturated by oil or gas has a

remarkable dispersion, which is frequently reported by

practitioners. As a result, we may expect more than one

inverse solution outlining the range of conductivities of

such layers.

Several strategies for the inversion of resistivity logging

measurements use the convex optimization methods only

(e.g., Abubakar and Berg 2000; Abubakar et al. 2006;

Zhang et al. 1995). Unfortunately, they do not deliver

guarantee of finding all solutions. Another possibility is to

use stochastic, evolutionary methods (e.g., Burczyński and

Osyczka 2004; Kern et al. 2004; Pan et al. 2011), but their

applicability is restricted by a huge computational cost and

moderate accuracy. The computational cost problem may

be partially overcome by using two-phase strategies in

which a stochastic algorithm is used as a preprocessor (the

global phase) for selecting starting points of convex opti-

mization processes (the local phase) (e.g., Schaefer et al.

2004; Törn 1975).

The main goal of this paper is to introduce the two-

phase strategy that offers the asymptotic guarantee of

success (see e.g., Horst and Pardalos 1995) and allows for

dealing with multimodality, delivering a high final accu-

racy with an exceptionally low computational cost for

inversion of 3D DC resistivity logging measurements.

The global phase is performed by the dynamically

adjustable Hierarchic Genetic Strategy hp–HGS (Schaefer

and Kołodziej 2003).

This strategy develops a tree of dependent demes. The

root-deme performs the most chaotic search with low

accuracy. Along with going deeper in the tree, the search

becomes more local and accurate. The strategy starts with

the root-deme only. After a number of epochs (the meta-

epoch), the best individual is selected as a seed of the child-

deme. Sprouting new demes is repeated concurrently for

root and all branches excluding leaves. It is performed

conditionally, if there is room for new deme among

existing ones at the particular level of the hp–HGS tree (the

distance between centers of existing demes and a seed of a

new deme is sufficiently large). Moreover, child-demes at

each level are periodically checked, and redundant demes

are reduced (joined and commonly selected). Evolutionary

processes in branches and leaves are stopped if no progress

is observed. The whole strategy is stopped if a sufficient

number of well fitted leaves are obtained. Both, binary and

real-valued encoding simple genetic algorithm (SGA) and

simple evolutionary algorithm (SEA) are utilized.

The local phase consists of running local gradient

method starting at the satisfactory fitted individuals, at

most one per one leaf-deme. In particular, we utilize the

Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm, a

quasi-Newton method utilizing the approximation to the

Hessian matrix.

The HGS structure results in much less total fitness

evaluations than a single population algorithm searching

with the maximum accuracy (see e.g., Schaefer and

Kołodziej 2003; Wierzba et al. 2003). Only the root-deme

searches continuously with a large number of individuals.

Branches and leaves are small demes invoked only in the

promising regions found by they parental demes and

quickly terminated, just after they stop to search

effectively.

Next, the conditional sprouting and redundancy reduc-

tion among child demes significantly decreases a number

of fitness evaluations. Moreover, these mechanisms allow
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for concurrent identification of separate basins of attrac-

tions by separate well fitted leaf-demes. The target accu-

racy in the global phase utilized by leaf-demes should not

be so high, only enough to separate basins of attractions of

different minimizers.

A huge cost reduction is caused by the scaling of the fitness

evaluation error. Forward simulations are performed with a

self-adaptive hp goal-oriented Finite Element Method. The

computational cost of misfit evaluation by hp–FEM depends

strongly on the assumed accuracy. This accuracy is adapted to

the inverse error at the particular level of the population tree

generated byhp–HGS, which makes the global phase cheaper.

The necessary mathematical motivation will be delivered in

Sect. 6 and preceding Sects. 2–4.

Only the necessary minimum number of local searches

is activated for finding all minimizers with high accuracy.

The local gradient searches are expensive in case of

numerical gradient evaluation, which is necessary if, for

some reasons it can not be obtained analytically (e.g.,

misfit irregularity or lack of its algebraic formula). Such

strategy outperforms the multistart with a uniform sam-

pling of starting points (Törn 1975).

Contrary to traditional inversion algorithms that produce

a unique solution to the problem, our hybrid strategy

delivers multiple solutions, which enables an expert on the

field to determine the best possible solution as well as the

uncertainty level.

The idea of hp–HGS was introduced in 2007 Paszyński

et al. (2007). Asymptotic guarantee of success of HGS was

proved in Schaefer and Kołodziej (2003). Analysis of the

asymptotic guarantee of success and the computational cost

reduction with respect to the single- and multi-deme strate-

gies without the common scaling of forward and inverse

errors is performed in Schaefer and Barabasz (2008). The

papers Barabasz et al. (2009, 2011b), show the theory nec-

essary for applying hp–HGS to the inverse, parameter

problems in heat flow. They contain also the computational

examples of finding multiple solutions by hp–HGS. Similar

results related to the hp–HGS application to the inverse,

parametric elasticity problems were presented in Barabasz

et al. (2011a).

The novelty of this paper consists of applying the two-

phase strategy combining hp–HGS and local methods for

the inversion of 3D DC resistivity logging measurements.

Moreover, all mathematical derivations leading to the

forward and inverse error relationship necessary for the

strategy verification are new. All presented simulations

showing the strategy in action have not been published

before. Additionally, we compare results obtained by our

proposed hp–HGS–BFGS method with two state-of-the-art

methods frequently applied for solving ill-posed multi-

modal problems, showing the superior performance of the

proposed method.

The paper is organized as follows. In Sect. 2, we

describe our model forward problem, which is governed by

the conductive media equation. We also introduce a dual

forward problem. Sect. 3 outlines the application of hp

Finite Element strategy for forward simulations. In the next

sections, we consider inverse problems. A general intro-

duction to this topic is provided in Sect. 4. Section 5

describes the Hierarchic Genetic Strategy with binary and

real-number encodings. Then, we discuss the relation

between approximate forward and inverse solutions errors

in Sect. 6. Section 7 analyzes the hp–HGS strategy for

solving dual inverse problems.

Section 8 discusses briefly the advantages of the pro-

posed hybridization and compares its features with other

stochastic strategies. Section 9 describes the numerical

inversion of resistivity measurements obtained using the

hybrid strategy. In Sect. 10, we compare our results with

simulations obtained with two state-of-the-art global opti-

mization methods: the Simple Evolutionary Algorithm and

the multistart method.

Finally, conclusions are outlined in Sect. 11.

2 Forward problems

2.1 DC conductive media equation

The direct current flow in the continuum 3D conductor is

governed by the so called conductive media equation

r � ðrruÞ ¼ �r � Jimp ; ð1Þ

where r is the conductivity tensor field, Jimp represents the

prescribed, impressed electric current source, and u is the

scalar electric potential.

We are looking for solutions to (1) in the domain X 2
R

3 being a 3D cylinder surrounding the borehole (see Fig.

1). Notice that such X is a simply connected bounded

domain with Lipschitz boundary. We assume Dirichlet and

Neumann boundary conditions uD and h on the separate

nonintersecting parts CD, CN of oX, respectively.

Multiplying test function v 2 H1
DðXÞ ¼ fu 2 H1ðXÞ :

ujCD
¼ 0g by equation (1), and integrating by parts over the

domain X, we obtain the following variational formulation:

Find u 2 uD þ H1
DðXÞ such that:

ðrrurvÞL2ðXÞ ¼ ðr � Jimp ; vÞL2ðXÞ þ ðh ; vÞL2ðCN Þ

8v 2 H1
DðXÞ;

8
><

>:

ð2Þ

where uD 2 H1ðXÞ is a lift of the essential Dirichlet data uD
(denoted with the same symbol), h ¼ rru � n is a pre-

scribed flux on CN , n is the unit normal outward (with
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respect to X) vector, and ujCD
¼ 0 is understood in the

sense of traces.

We assume that

Jimp 2 Hðdiv;XÞ; h 2 H1ðoXÞ; ð3Þ

ri;j 2 L1ðXÞ; i; j ¼ 1; 2; 3; i.e. 9M[ 0; jri;jj �M;

i; j ¼ 1; 2; 3; ð4Þ

almost everywhere in X , and

9c0 [ 0; 8n 2 R
3;

P

i;j¼1;2;3

ri;j ni nj � c0

P

i¼1;2;3

n2
i ;

ð5Þ

almost everywhere in X.

In the sequel, we shall consider only the case in which r

is a scalar field i.e. ri;j ¼ r di;j where r is a scalar con-

ductivity. Instead of (4), (5) we assume that:

9c0;M; 0\c0\M\þ1;

c0 � r�M almost everywhere in X:
ð6Þ

Of course (6) implies that r 2 L1ðXÞ. Moreover, we set

uD ¼ 0 and CN ¼ ; so (2) is reduced to the form:

Find u 2 H1
0ðXÞ such that:

ðrru ; rvÞL2ðXÞ ¼ ðq ; vÞL2ðXÞ 8v 2 H1
0ðXÞ;

(

ð7Þ

where r � Jimp ¼ q 2 L2ðXÞ is the intensity of the ‘‘current

source’’ imposed by the probe. The above relation (7) will

be called the primal forward problem of DC conduction.

For the case of deviated wells (below 90�) in a hori-

zontally stratified layered media, we employ the hp–Fou-

rier finite element method described in Pardo et al. (2008).

This method performs a non-orthogonal change of

coordinates followed by a Fourier series expansion in the

azimuthal direction. Using that technique, we obtain fast

and accurate forward simulations of 3D resistivity logging

measurements in deviated wells.

2.2 Abstract formulation

Let us rewrite (7) into a more convenient abstract form.

First, we introduce the trilinear form:

b : L1ðXÞ � H1
0ðXÞ

2 3 ðr; u; vÞ !
bðr; u; vÞ ¼ ðrru ; rvÞL2ðXÞ 2 R

ð8Þ

Assumption (6) allows to define the family of operators

B : L1ðXÞ � H1
0ðXÞ 3 ðr; uÞ ! Bðr; uÞ 2 H�1ðXÞ ð9Þ

indexed by r 2 L1ðXÞ, so that

\Bðr; uÞ; v[ ¼ bðr; u; vÞ;
8u; v 2 H1

0ðXÞ; 8r 2 L1ðXÞ;
ð10Þ

where \�; �[ denotes the parity between H1
0ðXÞ and

H�1ðXÞ (see Denkowski et al. (2003a, b), for details).

Moreover q 2 L2ðXÞ allows for defining the linear, con-

tinuous functional F 2 H�1ðXÞ so that

F : H1
0ðXÞ 3 v ! ðq ; vÞL2ðXÞ 2 R: ð11Þ

We will later denote the solution to the primary forward

problem as uðrÞ in order to highlight its dependence on the

assumed conductivity field r.

The family of primal forward problems indexed by r 2
L1ðXÞ may be written as follows:

Find uðrÞ 2 H1
0ðXÞsuch that :

bðr; uðrÞ; vÞ ¼ FðvÞ 8v 2 H1
0ðXÞ;

(

ð12Þ

or as the family of equations in H�1ðXÞ

Find uðrÞ 2 H1
0ðXÞ such that:

Bðr; uðrÞÞ ¼ F:

�

ð13Þ

2.3 Dual forward problem

The crucial aspect of the solution uðrÞ to the primal for-

ward problem (2) will be its mean value over the subdo-

main XP � X occupied by the receiver part of the probe.

We will define the indicator functional:

H1
0ðXÞ 3 v ! \Q; v[ ¼ 1

meas ðXPÞ

Z

XP

v dx 2 R:

ð14Þ
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Fig. 1 3D geometry of a logging instrument in a vertical borehole

penetrating three dipping layers
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Obviously Q 2 H�1ðXÞ because

1

meas ðXPÞ

Z

XP

v dx

�
�
�
�
�
�

�
�
�
�
�
�
¼ 1

meas ðXPÞ

Z

X

vXP
v dx

�
�
�
�
�
�

�
�
�
�
�
�

� 1

meas ðXPÞ
vXP

�
�

�
�
L2ðXÞ vk kL2ðXÞ

�C vk kH1
0
ðXÞ;

where C contains the norm equivalence constant on H1
0ðXÞ.

The functional Q is sometimes called the quantity of

interest (see Oden and Prudhomme 2001).

Now we are ready to define the family of dual forward

problems

Find GðrÞ 2 H1
0ðXÞsuch that :

bðr;GðrÞ;wÞ ¼ QðwÞ 8w 2 H1
0ðXÞ;

�

ð15Þ

or as the family of equations in H�1ðXÞ

Find GðrÞ 2 H1
0ðXÞsuch that :

Bðr;GðrÞÞ ¼ Q;

�

ð16Þ

indexed by r 2 L1ðXÞ.

2.4 Basic features of forward problems

It is easy to observe that bðr; �; �Þ is symmetric, and Lipschitz

continuous in both variables with the constant M, and

coercive with the constant c0 uniformly with r satisfying (6).

Remark 1 Given all above assumptions, both forward

problems (primal and dual ones) (12), (15) have the unique

solutions uðrÞ, GðrÞ (see Denkowski et al. (2003a, b), for

details) for each fixed r satisfying (6). Moreover, the

solution to the primal forward problem uðrÞ depends

continuously on q (in L2ðXÞ and H1
0ðXÞ topologies) while

GðrÞ on Q (in H�1ðXÞ and H1
0ðXÞ topologies).

Remark 2 Since bðr; �; �Þ is symmetric, then (15) may

take a form:

Find GðrÞ 2 H1
0ðXÞ such that:

bðr;w;GðrÞÞ ¼ QðwÞ 8w 2 H1
0ðXÞ:

(

ð17Þ

Because H1
0ðXÞ is reflexive (i.e. ðH1

0ðXÞÞ
00

is isomorphic

with H1
0ðXÞ), we may associate the solution GðrÞ to (17) to

an element of ðH1
0ðXÞÞ

00
such that, in particular

\GðrÞ;F[ ¼ FðGðrÞÞ ¼ \Q; uðrÞ[ ; ð18Þ

where the angle brackets at the left-hand side denote the

parity between ðH1
0ðXÞÞ

00
and H�1ðXÞ, while the parity

between H�1ðXÞ and H1
0ðXÞ is denoted by the angle

brackets at the right-hand side. GðrÞ might be then

interpreted as the functional that returns the quantity of

interest associated with the solution uðrÞ to the primal

forward problem (13) obtained for the right-hand side F

being its argument.

Remark 3 Coupling (18) with (12) and (15), we obtain

FðGðrÞÞ ¼ bðr; uðrÞ;GðrÞÞ ¼ QðuðrÞÞ ð19Þ

or using the parity convention

\GðrÞ;F[ ¼ \Bðr; uðrÞÞ;GðrÞ[ ¼ \Q; uðrÞ[ :

ð20Þ

Lemma 1 The solution to the primal forward problem

(12) depends Lipschitz-continuously on the parameter r
i.e.

9C[ 0; uðr1Þ � uðr2Þ
�
�

�
�
H1

0
ðXÞ �C r1 � r2

�
�

�
�
L1ðXÞ: ð21Þ

Proof: We will follow strictly the ideas of the proof of

Theorem 3.1 from our earlier paper Barabasz et al. (2011b).

Let us denote for convenience u1 ¼ uðr1Þ; u2 ¼ uðr2Þ, two

solutions to the primal forward problem (12). We have

bðr1; u1; vÞ ¼ bðr2; u2; vÞ ¼ FðvÞ 8v 2 H1
0ðXÞ. Then:

bðr1; u1 � u2; vÞ ¼ ðr1rðu1 � u2Þ;rvÞL2ðXÞ
¼ ðr1ru1 � r1ru2 þ r2ru2

� r2ru2;rvÞL2ðXÞ
¼ �ððr1 � r2Þru2;rvÞL2ðXÞ
¼ �bðr1 � r2; u2; vÞ:

Then,

c0 u1 � u2k k2
H1

0
ðXÞ � jbðr1; u1 � u2; vÞj

¼ jbðr1 � r2; u2; vÞj:

Using Hölder inequality, we obtain:

c0 u1 � u2k k2
H1

0
ðXÞ

� r1 � r2
�
�

�
�
L1ðXÞ u2k kH1

0
ðXÞ u1 � u2k kH1

0
ðXÞ

� 1

c0

Fk kH�1ðXÞ r1 � r2
�
�

�
�
L1ðXÞ u1 � u2k kH1

0
ðXÞ:

Finally, u1 � u2k kH1
0
ðXÞ �C r1 � r2

�
�

�
�
L1ðXÞ, where C ¼

1

ðc0Þ2 Fk kH�1ðXÞ. h

2.5 Galerkin solutions

Let us study now the Galerkin solutions to both primal and

dual problems (12), (13), (15), (16). We introduce the

sequence fXigþ1
i¼1 of subspaces of H1

0ðXÞ so that Xi � Xiþ1,

i ¼ 1; 2; 3; . . . and dim ðXiÞ ¼ ni\þ1, niþ1 [ ni.

Moreover, 8u 2 H1
0ðXÞ

lim i!þ1 inf ui2Xi
ui � uk kH1

0
ðXÞ

n o
¼ 0; ð22Þ
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which implies that
Sþ1

i¼1 Xi ¼ H1
0ðXÞ.

Let us define the approximate family of Galerkin primal

forward problems:

Find uiðrÞ 2 Xi such that:

bðr; uiðrÞ; vÞ ¼ FðvÞ 8v 2 Xi;

�

ð23Þ

and the Galerkin dual forward problem:

Find GiðrÞ 2 Xi such that:

bðr;w;GiðrÞÞ ¼ QðwÞ 8w 2 Xi;

�

ð24Þ

where now b : L1ðXÞ � Xi � Xi ! R is the restriction of

the bilinear form b, and F : Xi ! R, Q : Xi ! R are the

restrictions of the right-hand side functionals. For the sake

of simplicity, we do not introduce new descriptions for

these restrictions. Their correct meaning will be deter-

mined by the context.

The assumed features of b, F, and Q imply that

uiðrÞ � uðrÞk kH1
0
ðXÞ! 0;

GiðrÞ � GðrÞk kH1
0
ðXÞ! 0

for i ! þ1;

ð25Þ

where uðrÞ;GðrÞ are the exact solutions to the primal

and dual forward problems (12), (13), (15), (16) (see

e.g. Ciarlet (1978)). Furthermore, Remark 3 implies

that

8i ¼ 1; 2; 3; . . .

FðGiðrÞÞ ¼ bðr; uiðrÞ;GiðrÞÞ ¼ QðuiðrÞÞ;
ð26Þ

where uiðrÞ;GiðrÞ 2 Xi are the corresponding solutions to

the Galerkin primal and dual forward problems,

respectively.

Let us prove a lemma that is convenient for future error

estimations.

Lemma 2 Let uiðrÞ; ujðrÞ; i[ j be two consecutive

solutions of the Galerkin primal forward problem (23) and

Gi;Gj the corresponding solutions to the Galerkin dual

forward problems (24). Then,

QðuiðrÞ � ujðrÞÞ ¼ bðuiðrÞ � ujðrÞ;GiðrÞ � GjðrÞÞ:
ð27Þ

Proof Taking into account (24), (26) and

Xj � Xi � H1
0ðXÞ, we have that

QðuiðrÞ� ujðrÞÞ ¼ bðr;uiðrÞ� ujðrÞ;GiðrÞÞ
¼ bðr;uiðrÞ;GiðrÞÞ� bðr;ujðrÞ;GiðrÞÞ
¼ bðr;uiðrÞ;GiðrÞÞ� bðr;ujðrÞ;GiðrÞÞ
�FðGjðrÞÞþ bðr;ujðrÞ;GjðrÞÞ

¼ bðr;uiðrÞ;GiðrÞÞ� bðr;uiðrÞ;GjðrÞÞ
� bðr;ujðrÞ;GiðrÞÞþ bðr;ujðrÞ;GjðrÞÞ

¼ bðr; uiðrÞ;GiðrÞ � GjðrÞÞ
� bðr; ujðrÞ;GiðrÞ � GjðrÞÞ

¼ bðr; uiðrÞ � ujðrÞ;GiðrÞ � GjðrÞÞ:

h

2.6 Logging curve

Taking into account N positions of the probe and

denoting by qi the intensity of current sources imposed

by their position, we obtain a vector of primal forward

problems:

Find uiðrÞ 2 H1
0ðXÞ such that:

bðr; uiðrÞ; vÞ ¼ FiðvÞ 8v 2 H1
0ðXÞ;

(

ð28Þ

where

Fi : H1
0ðXÞ 3 v ! ðqi; vÞL2ðXÞ 2 R: ð29Þ

Let us define next the vector of the influence operators

Qi 2 H�1ðXÞ, so that

H1
0ðXÞ 3 v ! \Qi; v[ ¼ 1

meas ðXi
PÞ

Z

Xi
P

v dx 2 R;

ð30Þ

for i ¼ 1; . . .;N and Xi
P � X being the domains occupied

by the probe’s receiver at its consecutive positions. Now,

we will define a vector of dual problems:

FindGiðrÞ 2 H1
0ðXÞ such that :

bðr;w;GiðrÞÞ ¼ QiðwÞ 8w 2 H1
0ðXÞ:

�

ð31Þ

Remark 3 and (29) imply immediately that

ðqi;GiðrÞÞL2ðXÞ ¼ FiðGiðrÞÞ ¼ QiðuiðrÞÞ; ð32Þ

where uiðrÞ;GiðrÞ are the solutions of the primal and dual

problems (28) and (31), respectively.

The vector QiðuiðrÞÞ; i ¼ 1; . . .;N being the ordered

collection of values of the indicator functionals obtained

for the consecutive positions of the probe, will be called

a logging curve. Its coordinates might be expressed by

the dual solution or by both primal and dual solutions

(see (32)). In other words, computing the logging curve

will consist of solving a sequel of forward dual prob-

lems (28) respecting the assumed resistivities (see e.g.

Fig. 2).

Remark 4 Notice that all features proved for the primal

forward and dual problems (as existence and uniqueness of

solution, continuous dependency on right-hand sides as

well as convergence of Galerkin approximations) are true

for each of the logging curve component problem (28).
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3 Adaptive hp finite element strategy for solving

forward problems

For the forward simulations, we employ a Finite Element

Method (hp–FEM) with variable element size hp and

polynomial order of approximation hp throughout the

computational grid. Once the problem is solved in a given

discretization (mesh), the error associated to the discrete

solution is estimated using a reference solution associated

to a finer grid. If that error is above a given threshold

level, the discretization is enriched either by dividing

some elements containing most of the error or by

increasing the polynomial order of approximation in

certain areas of the domain. After performing these

refinements, the quality of the solution is again evaluated

using a reference solution in a finer grid, and the entire

enrichment procedure is repeated until the final solution

exhibits a given degree of accuracy.

To estimate the error of a given hp–grid, we employ as a

reference solution the one associated to the globally hp–

refined grid, i.e., the h=2; pþ 1-mesh. Details on the

automatic refinement strategy can be found in Demkowicz

(2006), Demkowicz et al. (2007).

The main advantage of the self-adaptive hp–FEM is that

it delivers exponential convergence rates in terms of the

error vs. the number of unknowns for the problems con-

sidered in this paper (elliptic problems with a piecewise

analytic solution). A proof of this result can be found

in Babuška and Guo (1996) and references therein

(including Gui and Babuška 1986a, b). Notice that other

versions of the FEM (including h– and hp–FEM) converge

at best algebraically.

In order for the error to converge exponentially fast in a

particular quantity of interest (solution at receivers) rather

than in a global energy norm, we employ a modification of

the traditional energy-norm based hp–adaptive strategy

called goal-oriented hp–adaptive strategy.

Such refinement strategy employs the solution of a dual

(adjoint) problem (15) to estimate the error in the quantity

of interest (see Pardo et al. (2006b) for details).

Let us denote the relative error of the primary forward

problem (12) by erel and by �rel the relative error of the dual

forward problem being the difference between two con-

secutive approximate solutions obtained by the goal-ori-

ented hp–FEM.

In particular, the exponential convergence of the self-

adaptive goal oriented hp–FEM is experimentally con-

firmed as the straight line y ¼ �axþ b in the system of

coordinates, where horizontal axis represents the cube root

of the number of degrees of freedom x ¼ N1=3 and vertical

axis represents the logarithm of the relative error

y ¼ log10ð erelk kÞ; erelk k\1, where �k k denotes the proper

norm in the space of forward primal problem solutions. The

constants a and b are positive a; b[ 0 and problem

dependent. This implies the following relation

log10ð erelk kÞ ¼ �aðN1=3Þ þ b; erelk k\1; ð33Þ

which in turn implies

N ¼ �c1ðlog10ðc2 erelk kÞÞ3; erelk k\1; ð34Þ

where the constants are problem specific

c1 ¼ a�3; c2 ¼ 10�b [ 0. The computational cost of the

solution of the problem by using direct solver over the two

dimensional mesh, depends on the structure of the hp

refined mesh. For regular mesh the cost is of the order

O N3=2
� �

. For meshes with point-wise singularities the cost

can be reduced down to the linear one O Nð Þ. Finally,
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Fig. 2 The computation of the

sample logging curve consists

of solving a sequel of multiple

forward problems (28) over a

domain composed of a borehole

and five formation layers with

assumed conductivities. This set

of layers will be utilized in the

experimental section
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cost ¼ O �c1ðlog10ðc2 erelk kÞÞ3r
� �

; erelk k\1; ð35Þ

where r 2 ½1; 3=2	, and this time c1 ¼ a�3r; c2 ¼ 10�b [ 0.

Having hp–FEM primary forward solution, the dual

forward solution can be obtained with a linear computa-

tional cost OðNÞ. We can utilize the LU factorization of the

primal problem matrix, and perform one additional forward

and backward substitution. Thus, the relation between the

computational cost and relative error has the same form

(35) for primal and dual problems solution (they may differ

only in value of constant c1).

4 Inverse problem

We intend to find the best approximation of the unknown

resistivities (inverse of the conductivity field) q ¼ 1
r having

measured the logging curve QiðuiðrÞÞ; i ¼ 1; . . .;N.

Let us define the search domain as

D ¼
	
x 2 L1ðXÞ; 9M; c0;M[ c0 [ 0;

1

M
�x� 1

c0

; almost everywhere in X


:

ð36Þ

The dual inverse problem may be defined as follows:

Find x̂ 2 D such that:

lim
h!0;p!þ1

PN

i¼1

Fi Gi
h;p

1

x̂

� �� �

�Fi Gi 1

q

� �� ��
�
�
�

�
�
�
�

� 


�

lim
h!0;p!þ1

PN

i¼1

Fi Gi
h;p

1

x

� �� �

�Fi Gi 1

q

� �� ��
�
�
�

�
�
�
�

� 


8x2D;

ð37Þ

where q ¼ 1
r 2 D denotes exact parameters, x denotes

approximated parameters, Gi
�

1
q

�
is the exact solution to

the dual problem (31) for the i-th position of the probe

associated with the i-th point of the logging curve for the

exact parameters q, and Gi
h;p

�
1
x

�
is the approximate (by

hp–FEM) solution to the dual problem (31) for the i-th

position of the probe associated with the i-th point of the

logging curve for the approximated parameter x. Moreover

Fi 2 H�1ðXÞ is such that FiðvÞ ¼ ðqi; vÞL2ðXÞ 8v 2 H1
0ðXÞ.

Taking into account (19) in Remark 3, we can rewrite

the above problem (37) to the equivalent form:

Find x̂ 2 D such that:

lim
h!0;p!þ1

PN

i¼1

Qi
�
uih; p
� 1

x̂

��
� Qi

�
ui
� 1

q

��
�
�
�
�

�
�
�
�

� 


�

lim
h!0;p!þ1

PN

i¼1

Qi
�
uih; p
� 1

x

��
� Qi

�
ui
� 1

q

��
�
�
�
�

�
�
�
�

� 


8x 2 D:

ð38Þ

In other words, for a given reference logging curve,

geometry of the formation layers and resistivities of the

borehole and top and bottom formations, we seek for x̂
resistivities of the formation layers. The reference logging

curve is usually obtained from the field measurements. The

idea of the inverse logging curve problem was illustrated

by the simple example of finding 3 parameters ðx0;x1;x2Þ
being the constant value of the resistivity function x̂ (see

Fig. 3).

5 Hierarchic genetic strategy for solving global

optimization problems

The hierarchic genetic strategy (HGS) produces a tree-

structured set of concurrent evolutionary processes (see

Fig. 4). HGS was introduced in Schaefer and Kołodziej

(2003). The structure of the tree changes dynamically and

its depth is bounded by m\þ1.

HGS performs calculations in the following way:

– The first deme (population) of order one is created.

There is always exactly one deme at the first level and

it is called the root deme. The root-deme performs a

chaotic search with low accuracy.

– After a fixed number of genetic epochs K called the

metaepoch, each parental deme (at level \m) selects

its best fitted individual and sprouts a child-deme in the

neighborhood of this individual. Sprouting new demes

is repeated concurrently for root and all active demes

laying below in the HGS tree (at levels \m), called

branches, excluding deepest demes (at level m), called

leaves.

level 3

level 1

level 2

1

2

3

root deme

leaf demes

branch
demes

Fig. 3 HGS tree and corresponding coding meshes for binary

implementation
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– Demes at the consecutive levels search with higher and

higher accuracy. The maximum, target accuracy in the

global phase is performed by leaves.

– To prevent redundancy, HGS implements conditional

sprouting and branch reduction. The former allows

new demes to be sprouted only in regions, which are

not explored by demes already activated at the

particular level of the HGS tree. The latter reduces

(joins and jointly selects) demes at the same level that

perform search in the common landscape region or in

the regions that were already explored.

The HGS stopping policy is composed of a local branch

stopping conditions that terminates the evolution in leaves

and branches, and a global stopping condition that evalu-

ates the total maturity of the global search. Local stopping

conditions monitor progress of evolution in deme and stop

it, if unsatisfactory. The whole strategy might be stopped if

no new demes are sprouted after a sufficiently large num-

ber of metaepochs and all active leaves were stopped. The

other possibility is to stop the strategy when the satisfac-

tory number of well fitted individuals were already found.

Some details of stopping policy for logging measurements

inversion will be explained later in Sect. 7.

The strategy was implemented and studied twofold:

using binary encoding and SGA engines (see Kołodziej

et al. 2004a; Schaefer and Kołodziej 2003) for each branch

and leaf, and using real-number encoding and Simple

Evolutionary Algorithms (SEA) for running evolution of

each deme (see Wierzba et al. 2003).

In the binary version of HGS, we use various encoding

precisions and changing length of binary genotypes in

demes at different levels, to obtain different search accu-

racies. The length of a genotype increases along with

increasing level in the HGS tree. We apply a hierarchical

nested encoding to obtain search coherency for populations

at different levels: we begin with defining the densest mesh

of phenotypes in D for populations at m-th level and

recursively select some nodes to create meshes for lower-

order demes (see Fig. 4). The maximum diameter of the

mesh dj (satisfying dm\. . .\d1) determines the search

accuracy at j-th level of the HGS tree.

In the real-number encoding version of HGS, a genotype

is a vector of floating point numbers. In order to introduce a

sequence of increasing genetic spaces for subsequent

orders of branches, we use a sequence of scaling coeffi-

cients þ1[ g1 � g2 � . . .� gm ¼ 1. Let us denote a

search domain by D ¼
QN

i¼1½ai; bi	 � R
N , where

ai; bi; ai\bi are the lower and upper bounds for i-th

decision variable. The genetic space at i-th level is defined

as
QN

i¼1½0; bi�ai
gi

	 � R
N . In this way, we obtain genetic

spaces that are smaller for lower level branches, closer to

the root. The genetic space for leaves
QN

i¼1½0; ðbi � aiÞ	 is

of the same size as the admissible domain D, and has the

richest numerical representation. If a target search accuracy

in leaves equals dm, the accuracy in the underlying demes

will be reduced to dj ¼ gj dm, for j ¼ 1; . . .;m� 1.

Asymptotic analysis of HGS with binary encoding was

studied in Schaefer and Kołodziej (2003). It was proved

that the strategy possesses an asymptotic guarantee of

success. The decrease of computational cost vs. the single

population SGA with the finest encoding, represented in

HGS leaves was also estimated. HGS application to other

inverse problems was shown in Kołodziej et al. (2004a, b).

Real-number HGS, along with its efficiency, is discussed

in Wierzba et al. (2003).
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Fig. 4 The inverse problem is

to find resistivities of formation

layers from a given logging

curve (for details of this

example refer to Sect. 9)
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6 Relation between approximate forward and inverse

solutions errors

6.1 Estimation for a single position of the probe

Let us denote by erel
�

1
x

�
¼ uh=2;pþ1

�
1
x

�
� uh;p

�
1
x

�
the

relative error of the hp–FEM solution to the primal forward

problem (28) and, similarly, denote by �rel
�

1
x

�
¼

Gh=2;pþ1

�
1
x

�
� Gh;p

�
1
x

�
to the relative error of the hp–FEM

solution of the dual forward problem (15) for some x 2 D.

Let us compute now:

Q uh=2;pþ1

1

x

� �� �

� Q u
1

q

� �� �

¼ Q uh=2;pþ1

1

x

� �

� uh;p
1

x

� �� �

þ Q uh;p
1

x

� �

� u
1

x

� �� �

þ Q u
1

x

� �

� u
1

q

� �� �

¼ Q erel
1

x

� �� �

þ Q uh;p
1

x

� �

� u
1

x

� �� �

þ Q u
1

x

� �

� u
1

q

� �� �

:

Using Lemma 2 for erel
1
x

� �
and �rel

1
x

� �
, we have

jQ erel
1
x

� �� �
j ¼ jb erel

1
x

� �
; erel

1
x

� �� �
j and

Q uh=2;pþ1

1

x

� �� �

� Q u
1

q

� �� ��
�
�
�

�
�
�
�

� L erel
1

x

� ��
�
�
�

�
�
�
�
H1

0
ðXÞ

�rel
1

x

� ��
�
�
�

�
�
�
�
H1

0
ðXÞ

þ Qk kH�1ðXÞ uh;p
1

x

� �

� u
1

x

� ��
�
�
�

�
�
�
�
H1

0
ðXÞ

þ Qk kH�1ðXÞ u
1

x

� �

� u
1

q

� ��
�
�
�

�
�
�
�
H1

0
ðXÞ

;

ð39Þ

where L[ 0 is the continuity constant of the bilinear formB.

Proposition 1 Taking into account the assumptions of

Lemma 1, it is easy to prove that

u
1

x1

� �

� u
1

x2

� ��
�
�
�

�
�
�
�
H1

0
ðXÞ

�C x1 � x2
�
�

�
�
L1ðXÞ; ð40Þ

where xi ¼ 1
ri ; i ¼ 1; 2 and now C ¼ 1

ðc0Þ4 Fk kH�1ðXÞ.

Using (40) and (39) we are able to formulate the target

evaluation for the single position of the probe:

Proposition 2 The absolute indicator functional error by

solving the hp–FEM dual inverse problem is evaluated by

the product of relative hp–FEM errors of primal and dual

solutions added to the absolute hp–FEM error of primal

solution and the accuracy of solving the inverse problem

i.e.

Q uh=2;pþ1

1

x

� �� �

� Q u
1

q

� �� ��
�
�
�

�
�
�
�

� L erel
1

x

� ��
�
�
�

�
�
�
�
H1

0
ðXÞ

�rel
1

x

� ��
�
�
�

�
�
�
�
H1

0
ðXÞ

þ Qk kH�1ðXÞ uh;p
1

x

� �

� u
1

x

� ��
�
�
�

�
�
�
�
H1

0
ðXÞ

þ 1

ðc0Þ4
Qk kH�1ðXÞ Fk kH�1ðXÞ

 !

x� qk kL1ðXÞ;

ð41Þ

where c0 and L stand for the coercivity and Lipschitz

continuity constants of B, respectively.

6.2 Estimation for the dual inverse problem

The estimation delivered by (41) in Proposition 2 will be

true for each pair of component problems (28), (31) for

i ¼ 1; . . .;N

Qi uih=2;pþ1

1

x

� �� �

� Qi u
1

q

� �� ��
�
�
�

�
�
�
�

� L eirel
1

x

� ��
�
�
�

�
�
�
�
H1

0
ðXÞ

�irel
1

x

� ��
�
�
�

�
�
�
�
H1

0
ðXÞ

þ Qi
�
�
�
�
H�1ðXÞ uih;p

1

x

� �

� ui
1

x

� ��
�
�
�

�
�
�
�
H1

0
ðXÞ

þ 1

ðc0Þ4
Qi
�
�
�
�
H�1ðXÞ Fi

�
�
�
�
H�1ðXÞ

 !

x� qk kL1ðXÞ; ð42Þ

where eirel
�

1
x

�
¼ uih=2;pþ1

�
1
x

�
� uih;p

�
1
x

�
and �rel

�
1
x

�
¼

Gi
h=2;pþ1

�
1
x

�
� Gi

h;p

�
1
x

�
. Summing both sides of the above

inequality we obtain

XN

i¼1

Qi uh=2;pþ1

1

x

� �� �

� Qi u
1

q

� �� ��
�
�
�

�
�
�
�

� L
XN

i¼1

eirel
1

x

� ��
�
�
�

�
�
�
�
H1

0
ðXÞ

�irel
1

x

� ��
�
�
�

�
�
�
�
H1

0
ðXÞ

þ
XN

i¼1

Qi
�
�
�
�
H�1ðXÞ uih;p

1

x

� �

� ui
1

x

� ��
�
�
�

�
�
�
�
H1

0
ðXÞ

þ 1

ðc0Þ2

XN

i¼1

Qi
�
�
�
�
H�1ðXÞ Fi

�
�
�
�
H�1ðXÞ

 !

x� qk kL1ðXÞ:ð43Þ

The first component of the right-hand side might be eval-

uated using Cauchy-Schwarz inequality

L
XN

i¼1

eirel
1

x

� ��
�
�
�

�
�
�
�
H1

0
ðXÞ

�irel
1

x

� ��
�
�
�

�
�
�
�
H1

0
ðXÞ

� LC
XN

i¼1

eirel
1

x

� ��
�
�
�

�
�
�
�
H1

0
ðXÞ

 !
XN

i¼1

�irel
1

x

� ��
�
�
�

�
�
�
�
H1

0
ðXÞ

 !

;

ð44Þ
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where C is the norm equivalence constant in R
N . We are

ready to formulate the final estimation.

Proposition 3 The norm of the logging curve error might

be evaluated as the product of norms of relative hp–FEM

errors of primal and dual solutions added to the norm of

absolute hp–FEM errors of primal solutions obtained for

all coordinates of the logging curve and the accuracy of

solving the inverse problem i.e.

XN

i¼1

Qi uih=2;pþ1

1

x

� �� �

� Qi u
1

q

� �� ��
�
�
�

�
�
�
�

¼
XN

i¼1

Fi Gi
h=2;pþ1

1

x

� �

� Gi 1

q

� �� ��
�
�
�

�
�
�
�

� C0
XN

i¼1

eirel
1

x

� ��
�
�
�

�
�
�
�
H1

0
ðXÞ

 !
XN

i¼1

�irel
1

x

� ��
�
�
�

�
�
�
�
H1

0
ðXÞ

 !

þ C00
XN

i¼1

uih;p
1

x

� �

� ui
1

x

� ��
�
�
�

�
�
�
�
H1

0
ðXÞ

þ C000 x� qk kL1ðXÞ: ð45Þ

where

C0 ¼ LC;

C00 ¼ max
i¼1;...;N

Qik kH�1ðXÞ

n o
;

C000 ¼ 1

ðc0Þ4

XN

i¼1

Qi
�
�
�
�
H�1ðXÞ Fi

�
�
�
�
H�1ðXÞ

 !

and c0; L stand for the coercivity and Lipschitz continuity

constants of B, respectively, and C is the Cauchy-Schwarz

constant in R
N .

Let us apply the above Proposition 3 to the fitness

evaluation at the j-th level of the hp–HGS tree.

Remark 5 The first right-hand side component of (45)

expresses the influence of the limit relative direct errors

(primal and dual ones) imposed on the hp–FEM refinement

process. The second one is proportional to the absolute

FEM error, which decreases to 0 during hp refinements (see

Remark 4). The third component is evaluated from below

by C000di, where dj expresses the error appearing in the

inverse search performed by the j-th level HGS branch (the

grid size in case of binary implementation). In order to

make the hp–HGS inversion on the j-th level computa-

tionally economic, we should keep the first and the third

component comparable. In different words, decreasing

eirelð1
xÞ

�
�

�
�
H1

0
ðXÞ and �irelð1

xÞ
�
�

�
�
H1

0
ðXÞ below the quantity

RatioðjÞ ¼ 1
N

ffiffiffiffiffiffiffiffiffi

dj C
000

C0

q

does not improve the accuracy of fit-

ness evaluation.

7 The adaptive strategy for solving dual inverse

problems

The mathematical results concerning relations between the

approximate forward and inverse errors (Proposition 3 and

Remark 5) allow to apply the HGS strategy for inversion of

3D DC resistivity logging measurements (38) in an

exceptionally economic way.

The misfit evaluation needs to solve the series of for-

ward problems (15) associated with each point of the

logging curve. Computational cost of solving the forward

problem by the hp–FEM (see formula (34) in Sect. 3)

depends strongly on the assumed accuracy. We are able to

apply cheap, low accuracy misfit evaluations during evo-

lution in root-deme. The accuracy of misfit evaluation will

grow deep into the HGS tree, according to the ratio

introduced by Remark 5, up to the maximum one in leaves.

The resulted strategy is called hp–HGS.

A typical configuration of hp–HGS tree imposes large

root-deme and strongly decreasing size of branch-demes up

to the smallest one for a leave-demes containing only

several individuals.

Both, conditional sprouting and branch reduction

mechanisms (see Sect. 5) are based on a distance analysis

performed in the phenotype space. In the first case, the

distance between the seed individual (the best fitted indi-

vidual distinguished from the parental deme and re-coded

to the consecutive, child-level of the hp–HGS tree) and the

centroids of demes already sprouted at the child-level is

tested. If this distance is lower then the assumed threshold,

sprouting operation is abandoned. The threshold is fre-

quently set as the double of mutations standard deviation at

the child-deme level. In the current hp–HGS version, we

restricted the range of distance comparison to the child-

demes of the sprouting parental one.

Similarly, branch reduction is based on a distance

between centroids of two demes at the same level of the

hp–HGS tree. If it is smaller than the threshold (usually set

as a mutation’s standard deviation at the particular level of

the hp–HGS tree), the union of both demes is commonly

selected, creating a new deme, whose evolution is contin-

ued. Branch reduction mechanism is invoked periodically,

after each assumed number of metaepochs.

Local stopping conditions monitor the progress of a

mean fitness in branches and leaves. If it does not decrease

more than an assumed value in the prescribed number of

epochs, the evolution of this deme is abandoned. The

stopping parameters are set to be restrictive, i.e. they

usually allow to make only several most effective steps of

evolution. Generally, it is more economic to sprout new

demes than to run ineffective ones for a long time.
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The whole hp–HGS is stopped when a satisfactory

number of well fitted individuals is found. It is possible to

define a satisfactory fitted individual in the case of inverse

problems, because its minimum value (the minimum misfit

value) is always zero. The number and possible location of

minimizers might be assessed by experts on the field of

petroleum and gas survey.

A brief description of the hp–HGS strategy is presented

in the form of a pseudocode (Algorithms 1, 2).

1: initialize the root deme Proot;
2: AD = {Proot};
3: while global stop condition() = false do
4: AW = AD;
5: for P ∈ AW do
6: execute in parallel metaepoch(P );
7: end for;
8: end while;
9: STOP;

Algorithm 1: Pseudo-code of hp–HGS.

In the first algorithm, we use sets AD and AW to store

alive demes. The function global stop conditionðÞ checks

if either a satisfactory solution has been found or no more

local extrema can be found.

1: t ← 0;
2: repeat
3: for (i ∈ P ) do
4: solve forward problem for 1

ω
= code(i) on coarse and

fine FEM meshes;
5: compute Θ( 1

ω
);

6: while for all i (θi( 1
ω

) > Ratio(j)) do
7: execute one step of hp adaptivity;
8: solve problem on new coarse and fine FEM

meshes;
9: compute Θ( 1

ω
);

10: end while;
11: compute fitness(i) using final FEM mesh;
12: end for
13: if (P �= Proot) then
14: if (branch stop condition(P )) then
15: AD = AD \ {P};
16: end if
17: end if
18: if ((t = K) ∧ (P is not a leaf)) then
19: distinguish best fitted individual x from deme P ;
20: if (¬ children comparison(x)) then
21: AD = AD ∪ {sprout(x, P )};
22: end if
23: end if
24: perform proportional selection, obtaining a multiset of

parents;
25: perform SGA genetic operations on this multiset;
26: establish new contents of population P after the ge-

netic epoch;
27: t ← t + 1;
28: until (t = K)

Algorithm 2: Pseudo-code of the metaepoch function.

Let us denote by Hð1
xÞ ¼ ðh1ð1

xÞ; . . .; h
Nð1

xÞÞ, where

hið1
xÞ ¼ �irelð1

xÞ
�
�

�
�
H1

0
ðXÞ the vector of relative errors of hp–

FEM appearing by the solving direct problems (15) for all

logging curve points i ¼ 1; . . .;N. The hp-adaptation of the

FEM solution of the forward dual problem is performed

until at least one quantity hið1
xÞ is below than or equal to the

assumed RatioðjÞ (see Remark 5).

The function branch stop conditionðPÞ returns true if it

detects a lack of evolution progress of the current deme P.

The generic function fitnessðiÞ computes fitness accord-

ingly to the position of P in the hp–HGS tree.

The conditional sprouting mechanism is implemented as

follows. The procedure children comparisonðxÞ compares

the phenotype averages (centroids) of all child-demes with

the phenotype of the best fitted individual x distinguished

from the parental deme P. This procedure returns true if x

is sufficiently close to the centroids of the existing child-

demes. The generic function sproutðx;PÞ returns a new

child-deme surrounding x using proper encoding and

sampling, according to the position of the parental deme P

in the hp–HGS tree.

Lines 15 and 21 in Algorithm 2 are mutually excluded

among all instances of MetaepochðPÞ function processing

in parallel, because the set of active demes AD constitutes a

common, shared data. A particular implementation-based

mechanism of critical section handling is applied. The

modifications of the set of alive demes AD, imposed by the

particular deme P (see lines 15 and 21 in the Metaepoch

routine), do not influence changes performed by other de-

mes, because of their tree structure (see Fig. 4). The branch

reduction mechanism is not described in the Algorithms 1

and 2 for the sake of simplicity.

The presented general algorithmic description consti-

tutes a basis for the various implementations. The serial

(trivial) one forces to execute the loop 5–7 in Algorithm 1

sequentially. The highly developed structure of hp–HGS

demes creates an opportunity for advanced coarse grained

distributed implementations. Notice, that the fitness eval-

uations costs dominate and are several degree of magnitude

higher than all other costs associated with individuals and

demes handling (mutation, crossover, sprouting, branch

reduction, etc.) when solving parametric inverse problems.

Thus a typical implementation runs all operation except

fitness evaluation on a single computer node (e.g., front-

end workstation or single node of a cluster), while the hp–

FEM solving forward problems are computed in parallel,

dynamically scheduled to multiple sub-complexes of

computational nodes distinguished from a high perfor-

mance cluster. Local optimization methods utilized in the

second phase are scheduled in a similar way. We refer

to Grochowski et al. (2006), Jojczyk and Schaefer (2009),

Momot et al. (2004) for the more advanced agent-based
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scheduling of hierarchic genetic computations in a dis-

tributed environment.

8 Short discussion of hybrid strategy features

We synthesize the main advantages of the proposed hybrid

strategy:

It can find all minima of misfit after a sufficient number

of steps, which results from the asymptotic guarantee of

success of the global phase, performed by hp–HGS (see

Schaefer and Barabasz (2008)). Notice that this result is not

trivial in the case of complex multi-deme strategy with

adaptive search accuracy. We can obtain at least one well

fitted individual in basin of attraction of each global min-

imizer. The asymptotic guarantee of success allows to

study ill–posed inverse problems with ambiguous solu-

tions, which are difficult or even impossible to obtain by

other methods.

There are three ways of decreasing the computational

cost:

– By minimizing the number of fitness calls in the global

phase. It is obtained mainly by reducing the size and

number of child-demes (branches and leaves). More

accurate, intensive searches are mainly activated in

promising regions. Moreover, local stopping conditions

restrict the evolution in child-demes to the several most

effective initial epochs, because it is more economic to

sprout new demes than to run ineffective ones for a

long time. Conditional sprouting and branch reduction

mechanisms result in the additional, significant reduc-

tion of the number of active branches and leaves,

protecting search redundancy.

– By common scaling of the forward and inverse search

accuracy. The computational cost of misfit evaluation

by the hp–FEM rapidly decreases if the accuracy is

reduced (see formula (35), Sect. 3). The proper scaling

of the forward error with respect to the assumed inverse

one at each level of the hp–HGS tree (see Proposi-

tion 5, Algorithm 2) allows for a cheap, exhaustive

exploration in root-deme and branches close to the root.

The maximum accuracy of the global phase utilized by

leaf-demes is also far from the target one, only

sufficient for recognizing and separating basins of

attraction of different minimizers.

– By reducing a number of local searches. The global

phase allows to start only one local search per each

recognized basin of attraction. Reduction of the number

of local processes is crucial because of their huge

computational expense caused by many fitness calls

necessary for Hessian approximation, and the high

computational cost of a single misfit evaluation with

the highest target accuracy.

We compare advantages underlined before with features of

competing strategies:

– Genetic algorithm with a single population and multi-

deme, island model. It performs more fitness calls than

hp–HGS because it does not concentrate the search in

promising areas, it does not use a restrictive stopping

condition in order to preserve global search and it may

concentrate the search in a single basin of attraction ‘‘a

premature convergence’’ for a long time. The above

proposition may be supported by the tests for contin-

uum optimization benchmarks (Schaefer and Kołodziej

2003; Kołodziej et al. 2004a; Wierzba et al. 2003).

Moreover, in contrast to hp–HGS, the considered group

of genetic strategies performs all fitness evaluations

with a uniform high accuracy, which generates an

enormous unacceptable computational cost.

– Local search with multiple restarts (departing from

random solutions). This strategy needs to start a large

number of expensive local processes, comparable to the

size of a root-deme in hp–HGS in order to find multiple

minimizers, which generates an unacceptable total

computational cost, much greater than in the case of

two-phase strategies, in which the number of starting

points is significantly reduced (see e.g., Törn (1975)).

– Memetic algorithm, where the local search is used in

the main loop of the GA.

Local, convex optimization methods incorporated in

evolutionary search as a ‘‘gradient mutation’’ can

degrade its exploratory power if activated too fre-

quently. Moreover, too many local searches bound the

memetic search to the multi-start strategy, thwarting its

efficiency. The core idea in memetic strategies is to

gain experience to make a further search more

economic . This idea is represented in the proposed

strategy, being a composition of hp–HGS with local,

convex methods. This strategy offers the hierarchy of

searches with various degrees of locality. All of them

are activated by the main, genetic one, performed by

the root-deme. Each path in the hp–HGS tree represents

stochastic processes that explore the selected region of

admissible domain more locally and accurately (with-

out losing an asymptotic guarantee of success). The

deeper exploration is undertaken conditionally when it

is promising (e.g., the well fitted individual is found in

the region penetrated by a parental deme). During this

procedure, demes introduced in the same basin of

attraction bound one to each other and are reduced by

the branch reduction mechanism. The most promising

paths reach the leaf-level and point out the basins of
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attraction of separate minimizers. Most local, expen-

sive convex methods are started from the best fitted

individuals in such leaves.

9 Experiments

The problem under considerations is the inverse DC

problem in which we are searching for the values of three

ground layer resistivities x0, x1 and x2. The reference

values are x0 ¼ 1 X � m, x1 ¼ 5 X � m and

x2 ¼ 20 X � m. We have performed the following series of

computations.

– Global search by means of the hp–HGS with the binary

encoding.

– Local gradient-based BFGS method started from the

points found by the binary HGS.

– Global search by means of the hp–HGS with the

floating-point encoding.

– Local gradient based BFGS method started from the

points found by the floating-point HGS.

In all these simulations, the misfit values are computed as

the square of the Euclidean distance (hence: without the

square root) between an obtained logging curve and the

reference logging curve (the ‘‘exact’’ one).

For the search domain we select the cube ½0:1; 103	3. To

provide a more thorough search for the parameter values

around 1 we transformed the original domain with the

following mapping

R
3 3 x�! log10ðxiÞ þ 1½ 	i¼1;2;32 R

3; ð46Þ

which resulted in the cube ½0; 6	3.

9.1 Global ‘‘binary’’ search

We performed a simulation of the 3D DC borehole resis-

tivity measurements problem using hp–HGS method with

three levels. Parameters of the simulation are presented in

Table 1. Population sizes were selected to balance the time

of evaluating a single solution with search capabilities of a

population. Code length for a single parameter was 15 on

the first level, 21 on the second level, and 27 in the leaves

(third level). Parameters setting discussed above is based

on our experience in solving ill-posed inverse parametric

problems of heat conduction and elasticity Barabasz et al.

2011a, b, 2009; Paszyński et al. 2007.

The reference logging curve is usually obtained from the

field measurements. For testing purposes, we computed this

curve for the 60 degrees deviated well by using a self-

adaptive goal oriented hp–FEM algorithm with high

accuracy (10�5). The model problem is composed of: a

borehole with resistivity 0:1X � m, a sand layer with resis-

tivity 100X � m, a shale layer with resistivity 5X � m, an oil

layer with resistivity 20X � m, a water layer with resistivity

1X � m, and a rock layer with resistivity 1000X � m, which

makes a total of five layers, as illustrated in Fig. 3.

Fitness value of each candidate solution x (resistivity

vector) was evaluated as the square of the Euclidean norm

of the difference between discrete representations of the

reference logging curve calculated with high accuracy and

the logging curve computed by the self-adaptive goal-ori-

ented hp–FEM algorithm for x with accuracy depending

on the level in HGS tree. The accuracy (see last row in

Table 1) corresponds to the maximum relative error dec-

rement in a single hp–FEM step (see e.g., Paszyński et al.

(2010)) applied to the solution of a forward problem at a

particular HGS level.

The results of the global binary search phase (six

obtained points) are presented in Table 2. For testing

purposes, we have executed the self-adaptive goal-oriented

hp–FEM algorithm on these points, in order to generate and

plot the resulting logging curves. The curves corresponding

to the found six points are presented in Fig. 5. The curves

have also been compared to the exact logging curve,

denoted by bold light gray color. The best fitted Point 2 is

the most similar point to the exact logging curve, as

expected. The six points obtained after the global binary

phase are also depicted in Fig. 6 by six diamonds. The

figure does not present the values of x0 since they are all

approximately equal to 1.

9.2 Local ‘‘post-binary’’ search

The local phase was executed from the two best fitted

points obtained from the binary global phase. In particular,

we have executed the local phase on Point 2 and Point 3,

since the misfit of these points is less than 0:1. We have

used the BFGS method, and the relative error of the self-

adaptive hp–FEM algorithm was set to 0:001. The local

phase has slightly changed the location of the points, as it is

depicted in Fig. 6 by squares, located in the neighborhood

Table 1 Parameters of the simulation in 3D DC case. The last row

corresponds to the maximum relative error decrement in a single hp–

FEM step applied to the solution of a forward problem

Level 1 Level 2 Level 3

Population size 12 6 4

Code length 45 63 81

Mutation rate 0.1 0.01 0.001

Crossing rate 0.5 0.5 0.5

Relative hp–FEM error 0.7 0.1 0.01
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of Point 2 and Point 3. On the plot we do not display the

value of x0 approximately equal to 1 even after the global

phase.

We can draw the following conclusion from these

experiments. The global phase has found some points with

x2 parameter ranging from 20 to 100. However, only

points with x2 approximately equal to 20 have minimal

misfit and the local phase has corrected them slightly.

9.3 Global ‘‘floating-point’’ search

We have also implemented and executed the HGS algo-

rithm with a floating point coding. The HGS used the same

three accuracy levels as in the binary case and the same

strategy was used for selecting local phase starting points.

Also the population sizes, mutation and crossing rates were

as in the binary case. The scale parameters utilized by the

floating point search are the following:

g1 ¼ 16384; g2 ¼ 128; g3 ¼ 1

The floating-point HGS parameters are summarized in

Table 3.

The floating point HGS algorithm found the following

twelve starting points, summarized in Table 4. Again, for

testing purposes, we have executed the self-adaptive goal-

oriented hp–FEM algorithm on these points, in order to

generate and plot the resulting logging curves. The curves

corresponding to the found twelve points are presented in

Figurepost-binary-curvespost-binary-curves Fig. 7. The

curves have been also compared to the exact logging curve,

denoted by bold light gray color. We can see that the

floating-point global search has found much more points

than binary global search and generally more points are

better fitted. The twelve points obtained after the global

floating-point phase are also depicted in Fig. 8 by twelve

diamonds. The figure does not present the values of x0

since they are all approximately equal to 1.

9.4 Local ‘‘post-floating-point’’ search

The local phase was executed from the five best fitted

points obtained from the floating-point global phase. In

particular, we have executed the local phase from Point 1,

Point 4, Point 5, Point 6 and Point 10, since their misfit

values are less than 0:1. We have utilized the BFGS

Fig. 5 The logging curves

corresponding to points found

after binary global search phase.

The bold gray curve

corresponds to the exact logging

curve

Fig. 6 The results of the global and local binary phases. The

particular points are denoted by P1; ::::;P6 labels, since they

correspond to the six curves presented in Fig. 5

Table 2 Results of the global binary search

x0 x1 x2 Misfit

Point 1 1.019 70.624 56.998 0.220766696114

Point 2 0.549 6.540 37.186 0.0420046286544

Point 3 0.760 18.789 33.791 0.0919687357984

Point 4 1.022 62.664 91.5683 0.224530498495

Point 5 1.069 69.583 99.774 0.236968057675

Point 6 1.004 70.920 31.900 0.201298418709
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method again, and the relative error of the self-adaptive

hp–FEM algorithm was set to 0:001. The results from the

floating-point global and local phases are summarized in

Fig. 8. The plot does not present the values of x0 since

they are approximately equal to 1. The local phase has

changed the locations of these five best fitted points

slightly, which is denoted in Fig. 8 by squares.

This group of experiments entitles us to the following

conclusions.

The floating-point global phase has found much more

points than the binary global phase. In particular, the

floating-point global phase has found some points with x1

parameter ranging from 0 to 60, as well as x2 parameter

ranging from 3 up to 33000. However, only points with x1

from range of 0 to 10 have minimal misfit and the local

phase corrected them slightly.

10 Comparison with state-of-the-art methods

The goal of this section is to provide a fair comparison of

our hybrid hp–HGS strategy with classic state-of-the-art

methods widely utilized in the continuous global

optimization.

The first reference method is the Simple Evolutionary

Algorithm (SEA) (see e.g., Törn (1975)), the second one is

the multistart method (MS) (see e.g., Michalewicz (1996))

utilizing the BFGS (Broyden-Fletcher-Goldfarb-Shanno)

quasi-Newton local optimization algorithm Nocedal and

Wright (2006). The BFGS implementation was taken from

the SciPy scientific Python library Scientific Computing

Tools (2001). All above methods were executed for the DC

inverse problem described in Sect. 9.

Let us first estimate the budget of the floating-point

encoded hp–HGS hybrid strategy with BFGS local search,

applied to the solution of the DC problem. The budget

Tbudget is defined as the amount of time spent on solving the

DC problem by the hybrid algorithm on a single worksta-

tion with quad cores, where all the calls of the self-adaptive

hp–FEM were serial, but the hp–FEM code itself utilized

four cores for each computation. The computational budget

can be estimated by the following formula:

Tbudget ¼ troot 
 Nroot þ tinter 
 Ninter þ tleaves 
 Nleaves

þ tlocal 
 Nlocal 
 Niter ð47Þ

where troot and Nroot are the average time of calling the self-

adaptive hp–FEM with the accuracy of the root level and

the number of such calls, respectively, tinter and Ninter are

the average time of calling the self-adaptive hp–FEM with

the accuracy of the intermediate level and the number of

such calls, respectively, tleaves and Nleaves stand for the

average time of calls of the self-adaptive hp–FEM with the

accuracy of the level of the leaves and the number of such

calls, respectively, tlocal is the average time of calling the

self-adaptive hp–FEM with the accuracy of the local

method, Nlocal stands for the number of calls of the self-

adaptive hp–FEM at the single iteration of the local

method, and Niter is the average number of iterations of the

local gradient method.

By analyzing the log files from the hp–FEM hybrid

method execution, we have estimated the total budget

Tbudget ¼ 8523:4 minutes. We have also obtained the

average execution time for the self-adaptive hp–FEM code

for 4 considered accuracies, troot ¼ 2:2 minutes, tinter ¼ 2:7

minutes, tleaves ¼ 10:0 minutes, tlocal ¼ 19:0 minutes.

Next, we estimate the parameters of SEA and MS

algorithms in such a way that the comparison of the three

methods is fair. In particular, we provide each method with

the same computational budget and assure the conditions

under which they will work properly. We assume the

Table 3 Parameters of the floating point HGS

Root Intermediate level Leaves

Population size 12 6 4

Mutation probability 0.1 0.01 0.001

Mutation std. dev. 1.0 0.2 0.01

Crossover probability 0.5 0.5 0.5

Crossover mean 0.5 0.5 0.5

Crossover std. dev. 0.01 0.01 0.01

Sprout std. dev. 0.1 0.01

Sprout min. distance 0.5 0.2

Sprout max. value 2 0.5

Encoding scale (g) 16384 128 1

Ratio 265 13557 694136

Table 4 Results of the floating point global search

x0 x1 x2 Misfit

Point 1 1.003 2.287 491.275 0.0309955725861

Point 2 1.518 40.215 81.736 0.18913950464

Point 3 1.677 52.161 15.336 0.18563908906

Point 4 0.429 1.441 13317.938 0.0998952955352

Point 5 0.955 7.895 33995.309 0.0155211450748

Point 6 0.410 9.422 409.705 0.0788856673271

Point 7 0.803 19.114 275.680 0.103517536713

Point 8 1.541 0.469 1089.258 0.234231539517

Point 9 0.320 1.090 40.410 0.158735090456

Point 10 1.436 5.081 64.404 0.0123941038654

Point 11 2.370 5.692 3.732 0.248640339227

Point 12 1.398 1.038 8691.385 0.13256144668
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relative error 0:001 of self-adaptive hp–FEM calls utilized

by both reference methods (SEA and MS), the same as

used in the local method. In other words, within the com-

putational budget Tbudget both methods can perform at most

Tbudget=tlocal hp–FEM calls.

Based on broad experience from the field of evolution-

ary computation, we can assume that the SEA algorithm

should perform at least tmin epoch ¼ 100 epochs. It is nec-

essary for enabling the evolutionary mechanisms to trans-

form the initial population and converge towards misfit

minima. From that estimate, it follows that the number of

hp–FEM solver calls per genetic epoch in the SEA popu-

lation should not exceed

Tbudget

tlocal 
 tmin epoch

� �

¼ 8523:4

19 
 100

� �

¼ 4:486d e: ð48Þ

On the other hand, during a genetic epoch no less than

25 % of individuals evaluate their fitness (on the average),

which results from the current parameter setting. Hence,

we can safely assume the population size of 20.

In the MS search we used the BFGS algorithm, which

estimates the gradient and the Hessian matrix in each

iteration, which requires several calls of the self-adaptive

hp–FEM code. Based on our experience obtained from the

previous experiments, we can estimate the average number

of calls for this method as NBFGS calls ¼ 20; and the aver-

age number of iterations required for the method to con-

verge as NBFGS iter ¼ 5: Thus, the number of BFGS

processes that can be successfully executed with the given

budget can be estimated as

Tbudget

tlocal 
 NBFGS calls 
 NBFGS iter

¼ 8523:4

19 
 20 
 5
� 4:5: ð49Þ

We assumed that about half of the local gradient methods

will not converge, thus we utilize 10 starting points in MS

generated with the uniform distribution over the search

domain.

10.1 Simple evolutionary algorithm

For the first comparison we used the Simple Evolutionary

Algorithm with the population size 20. Other genetic

parameters are summarized in Table 5. We used propor-

tional selection and arithmetic crossover. The crossing rate

is the probability of selecting a genetic individual for

reproduction. Analogously, the mutation rate is the prob-

ability of selecting an individual for mutation. During

mutation, a new (mutated) individual is sampled according

to the normal distribution centered in its parent and with a

given standard deviation. The offspring ‘‘born’’ outside the

search domain is ignored, no repairing mechanisms were

applied (see e.g., Michalewicz (1996) for details). The

SEA algorithm has been executed for 15768 minutes, and it

performed 138 genetic epochs with 714 self-adaptive hp–

FEM solver calls, so the assumed budget Tbudget ¼ 8523:4

minutes was exceeded. It approached only one minimum at

½1:7757; 1:3518; 10859:5794	 with fitness value 0:1648. All

other individuals had either much larger fitnesses or were

concentrated around the same local minimum.

Fig. 7 The logging curves

corresponding to points found

after floating-point global

search phase. The bold gray

curve corresponds to the exact

logging curve

Fig. 8 The results of the global and local floating-point phases. The

particular points are denoted by P1; ::::;P12 labels, since they

correspond to the twelve curves presented in Fig. 7
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10.2 Multi-start

The second method executed for the comparison was the

multistart (see e.g., Törn (1975)), which ran the local

BFGS search algorithm from 10 starting points sampled

randomly (see Table 6). The BFGS algorithm stopped after

1 or 2 iterations for 5 starting points because a very small

gradient norm was encountered. For other 5 points various

numbers of iterations (from 6 to 52) were performed,

however the value of the fitness function as well as the

values of the parameters were not updated significantly.

The total a posteriori execution time for the MS method

was around 50123 minutes, which exceeds the assumed

budget almost 6 times. BFGS started from Point 1 finished

with the misfit value about 0:33, the other BFGS runs

ended with the misfit value greater than 3, i.e. no satis-

factory local minimum was encountered.

11 Conclusions

We described a hybrid strategy for solving inverse prob-

lems exhibiting multiple minima. The strategy utilized a

hp–HGS algorithm on the global level.

The hp–HGS algorithm tuned the length of the genetic

code (or the accuracy of representation in case of floating-

point implementation) as well as the accuracy of the goal-

oriented self-adaptive hp–FEM solver. This allowed to find

relatively quickly on the global level the regions where we

expect to find the local minima. In these regions, we

increased the accuracy of the genetic search by increasing

the length of the genetic code (or the accuracy of repre-

sentation in case of floating-point implementation) and the

requested accuracy for the goal-oriented self-adaptive hp–

FEM solver.

After several iterations of the hp–HGS strategy, we

switched to the (local) gradient search to converge quickly

to the local minima within the regions delivered by the hp–

HGS algorithm.

The hp–HGS strategy requires knowledge of the relation

of approximate forward and inverse solutions errors. We

estimated the error relation for the considered problems in

Sect. 6 (see Propositions 2, 3 and Remark 5). The crucial

features necessary for establishing this relation were

Lipschitz continuity of the primal solution with respect to

the conductivity distribution (see Lemma 1) and the proper

evaluation of the quantity of interest functional taken for

the relative hp–FEM error (see Lemma 2).

We tested our strategy on a challenging numerical

problem consisting of the inversion of 3D DC borehole

resistivity measurements. In the global phase we performed

tests for hp–HGS with both binary and floating-point

encoding. The binary hp–HGS found only six starting

points, whereas the floating-point hp–HGS found twelve

starting points, proving to be a more powerful tool for

global phase computations. After the global phase, the

found value of x0 was approximately equal to 1 as

expected, however the values of x1 varied between

(6.54,70.62) after the binary global search, and between

(0.46, 52.16) after the floating-point global search. Simi-

larly, the values of x2 varied between (31.90, 99.77) after

binary global search and (3.72, 33.99) after floating-point

global search. We have selected the best fitted points after

the global phases and executed the local gradient search

with the BFGS method. The local phase check executed

after the binary global search phase resulted in the final

points x0 � 1, x1 2 f5; 20g and x2 � 40 (compare

Fig. 6). This may suggest that the problem is not very

sensitive to the x1 value. If we compare these results from

the results of the local phase executed after the global

floating-point search, we can see that the final points

obtained from the execution of the latter have the following

properties: x0 � 1, x1 2 ð0; 10Þ, and the problem is

insensitive to x2 value (compare Fig. 7). In order the verify

our conclusion that the problem is insensitive to x2, we

executed the self-adaptive hp–FEM algorithm for all the

points found after the global floating-point search. We

plotted the corresponding logging curves in Fig. 7, and

compared them to the exact logging curve. The comparison

showed that points with low fitnesses actually have almost

identical logging curves that cannot be distinguished by the

Table 5 Parameters of SEA

Population size 20

Crossing rate 0.5

Mutation rate 0.01

Mutation standard deviation 0.01

Relative hp–FEM error 0.001

Table 6 Points for the multi-start method together with number of

iterations and solver calls for BFGS algorithm

x0 x1 x2 Iterations Calls

Point 1 0.776 150.412 463.757 2 41

Point 2 79102.653 0.134 30.726 52 1483

Point 3 852.585 1623.620 74793.589 13 278

Point 4 10834.989 12.119 2331.844 7 148

Point 5 38.572 1.800 570.589 1 5

Point 6 665.296 938.495 0.171 1 5

Point 7 47.764 32843.280 0.426 1 5

Point 8 76554.300 312.651 25.982 6 123

Point 9 68.738 2136.115 32781.281 9 175

Point 10 25805.765 2.959 2.598 1 5
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inverse problem solver. We may conclude that the floating-

point coding algorithm allows to find additional results that

cannot be found by binary encoding algorithm. We can

also claim that DC measurements are not sensitive to the

resistivity of x2.

These results enable an expert on the field to evaluate all

possible solutions, and thus, they allow to better estimate

the subsurface properties as well as to assess the uncer-

tainty level. Thus, the proposed hybrid method provides an

adequate alternative for solving challenging multimodal

inverse problems.

The comparison of the method with state-of-the-art

methods like Simple Genetic Algorithm or the Multi-Start

method shows that only the hybrid hp–HGS can satisfac-

tory explore the landscape of the inverse problem solution

under the assumed computational budget, while SEA

method converged only to one local minimum and the MS

method got stuck on areas with the gradient being

approximately zero for all the selected points.
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Kołodziej J, Schaefer R, Paszyńska A (2004) Hierarchical genetic

computation in optimal design. J Theor Appl Mech Comput

Intell 42(3):519–539

Michalewicz Z (1996) Genetic algorithms ? data structures =

evolution programs, 3rd edn. Springer-Verlag, Berlin

Momot J, Kosacki K, Grochowski M, Uhruski P, Schaefer R (2004)

Multi-agent system for irregular parallel genetic computations.

Lect Notes Comput Sci 3038:623–630

Newman GA, Alumbaugh DL (2002) Three-dimensional induction

logging problems, part 2: a finite-difference solution. Geophysics

67(2):484–491

Nocedal J, Wright SJ (2006) Numerical optimization. Springer-

Verlag, Berlin

Oden JT, Prudhomme S (2001) Goal-oriented error estimation and

adaptivity for the finite element method. Comput Math Appl

41(5):735–756

A hybrid method for inversion of 3D 373

123



Pan X, Jiao L, Liu F (2011) An improved multi-agent genetic

algorithm for numerical optimization. Nat Comput

10(1):487–506

Pardo D, Calo VM, Torres-Verdı́n C, Nam MJ (2008) Fourier series

expansion in a non-orthogonal system of coordinates for

simulation of 3D dc borehole resistivity measurements. Comput

Methods Appl Mech Eng 197(1–3):1906–1925

Pardo D, Demkowicz L, Torres-Verdı́n C, Paszyński M (2006)
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