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Abstract The problem of calculating joint reaction forces in rigid body mechanisms with
redundant constraints, both geometric and nonholonomic, is discussed. When constraint
equations are dependent, some of the constraint reactions are unsolvable, i.e., cannot be
uniquely determined using a rigid body model, whereas some others may be solvable. In
this paper, analytic conditions, which must be fulfilled to obtain unique values of selected
reaction forces in the presence of dependent nonholonomic constraints, are presented and
proven. The concept of direct sum, known from linear algebra, is exploited. These purely
mathematical conditions are followed by numerical methods that enable detection of con-
straints with uniquely solvable reactions. Similar conditions and methods were proposed
earlier for holonomic systems. In this contribution, they are generalized to the case of lin-
ear nonholonomic constraints. An example of constraint reactions solvability analysis, for a
mechanism subjected to redundant nonholonomic constraints, is presented.

Keywords Redundant constraints · Nonholonomic systems · Constraint reactions

1 Introduction

Dynamic analysis of a multibody system consists in calculating motion resulting from loads
and driving constraints imposed on the system [10, 16, 28]. The time history of kinematic
quantities, i.e., positions, velocities, and accelerations of bodies, is determined during the
analysis. It is not necessary to calculate constraint reaction forces when the system is fric-
tionless and its motion is the only object of interests [10]. Nevertheless, constraint reactions
are frequently calculated along with the kinematic parameters describing motion, since they
are needed, e.g., for design purposes or structural analyses.
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In multibody modeling, the constraint reactions not always can be uniquely determined.
The problem of joint reactions indeterminacy, in engineering simulations of rigid multibody
systems, is most often caused by redundant constraints presence. Redundant constraints are
defined as constraints that can be removed without changing the kinematics of the system,
i.e., they appear when the same degree of freedom is restricted more than once. Real-world
mechanisms quite often are purposely overconstrained, mainly in order to strengthen or
simplify their construction. Redundant constraints can be present in both holonomic and
nonholonomic systems.

Multibody modeling of overconstrained systems is impeded. When redundant constraints
are present in the mathematical model of holonomic multibody system, the constraint equa-
tions are dependent [10, 16]; hence, the constraint Jacobian matrix is rank-deficient. There-
fore, special approaches are needed to handle equations of motion, e.g., [15, 20, 23, 27].

In the context of this article subject, special attention should be paid to the joint reac-
tions calculation. In multibody modeling, sometimes it is assumed that constraint equations
are independent (e.g., [4, 19]), hence redundant constraints, and thus reactions solvability
problems, are simply ignored. Most often, however, redundant constraints are handled using
one of two essentially different approaches. The first one consists in modifying the set of
equations in order to exclude dependent equations [16, 28] (redundant constraints elimina-
tion is an example of this approach). The second one consists in leaving the set of equations
unchanged and solving it using algorithms capable to deal with dependent equations (the
minimum norm solution, sometimes based on the pseudoinverse technique [32], and the
augmented Lagrangian formulation [2, 3] can serve as examples of this approach). In ei-
ther case, purely mathematical operations, not supported by laws of physics, are performed
to find the reactions [36]. Hence, the obtained solution usually reflects properties of the
redundant constraints handling method rather than physical properties of the investigated
multibody system. It should be noted, however, that contribution [11] indicates that in some
cases combination of additional weighting factors (which are tuned to reflect elasticity of
links and joints) with minimum norm solution leads to calculation of realistic reactions. So
far, no general method of factors selection is proposed. Similarly, in the case of penalty
methods, the authors of [13, 14, 30] formulated an idea that a flexibility aspect can be in-
corporated by relating the penalty factors to the real mechanism stiffness, which allows us
to solve the indeterminacy problem without adding any major complication to equations
of motion. However, so far no general rules on how to relate the penalty parameters with
flexibility properties of multibody system parts and joints are provided.

A direct consequence of constraints redundancy is that some or all constraint reactions
cannot be uniquely determined using a rigid body model [33]. Moreover, in the case of
Coulomb friction in joints, the simulated motion might be nonunique [8]. It can be proven,
however, that in the case of an overconstrained rigid body mechanism subjected to holo-
nomic constraints, despite the fact that all constraint reactions cannot be uniquely deter-
mined, selected reactions or selected groups of reactions can be specified uniquely [33,
34]. In [34], methods of constraint reaction solvability analysis were proposed. An algebraic
criterion, allowing detection of the joints for which reactions are uniquely solvable, was
formulated. This criterion was followed by numerical methods for finding such joints.

In this contribution, systems subjected to both holonomic and linear nonholonomic con-
straints are investigated. It is shown that when redundancy problems and reaction forces
are concerned, both types of constraints can be treated jointly and uniformly. The methods
of constraint reactions solvability analysis are generalized to systems subjected to linear
nonholonomic constraints. Firstly, the algebraic criterion is revisited and its applicability to
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nonholonomic systems is considered. Then numerical methods of reactions solvability anal-
ysis are discussed. Finally, an exemplary system with redundant nonholonomic constraints
is analyzed.

2 Equations of motion for constrained systems

2.1 Generalized coordinates and constraint equations

Consider a rigid multibody system described by n dependent generalized coordinates q.
Holonomic constraints imposed on coordinates are represented by a set of m nonlinear scalar
algebraic equations:

Φ(q, t) = 0m×1. (1)

We assume that constraints (1) are consistent, i.e., no contradictory conditions are im-
posed on coordinates q.

The holonomic constraint equations (1) can be differentiated with respect to time to ob-
tain constraints for velocities:

Φqq̇ + Φ t = 0m×1, (2)

where Φq is the constraint Jacobian matrix which may be rank-deficient and Φ t is the vector
of partial derivatives with respect to time.

Linear nonholonomic and scleronomic constraints (Pfaffian constraints) are represented
by a set of h scalar equations, linear in velocities q̇ [26]:

Ψ (q)q̇ = 0h×1. (3)

Note that in the case of redundant constraints presence, matrix Ψ can be rank-deficient.
It should be emphasized that the existence of a single nonintegrable velocity constraint

does not necessarily mean that a system is nonholonomic, since this constraint may prove
to be integrable by virtue of the remaining constraint equations. To check the holonomy of
the system, the Frobenius theorem may be employed [5, 26]. It is important that our further
considerations are valid for both integrable and nonintegrable Pfaffian constraints.

Equation (3) can be appended to Eq. (2) to obtain velocity level constraints for the whole
system:

Cq̇ + b = 0, (4)

where respective definitions of coefficient matrix C (often called a constraint matrix) and
vector b are the following:

C(q, t) =
[

Φq

Ψ

]
(m+h)×n

, b(q, t) =
[

Φ t

0

]
. (5)

We assume that constraints (4) are consistent, i.e., no contradictory conditions are im-
posed on velocities q̇. For our further considerations, it is important that when the mecha-
nism is overconstrained, rows of matrix C are linearly dependent, hence

r = rank(C) < m + h. (6)
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It is worth noting that constraint matrix C may be rank-deficient even when both Φq and
Ψ are full-rank matrices.

The degree of redundancy p is defined as

p = m + h − r. (7)

The velocity constraints (4) can be differentiated with respect to time in order to obtain
constraints for accelerations:

Cq̈ − Γ = 0(m+h)×1, (8)

with vector Γ defined as

Γ = −
[

(Φqq̇)qq̇ + 2Φ tqq̇ + Φ t t

(Ψ q̇)qq̇

]
. (9)

In our further considerations, we will utilize absolute Cartesian coordinates [16, 28]. The
main reason for choosing this type of coordinates is the fact that, in this approach, all kine-
matic pairs are treated in the same way, i.e., each pair is represented as a subset of Eq. (4).
In the case of other types of coordinates, e.g., relative joint coordinates, the constraint equa-
tions are formulated only for selected, loop closing joints. The uniform treatment of all
kinematic pairs simplifies calculation of joint reaction forces, however, it should be noted
that the problem of joint reaction solvability—crucial for our considerations—is an issue of
mechanism’s structure, and from this point of view the choice of coordinates is irrelevant.

2.2 Equations of motion

Equations of motion for the considered multibody system can be written in the following
form [10, 16]:

Mq̈ + CT λ = F(q, q̇, t), (10)

where M denotes the mass matrix (which is invertible), F is the vector containing the exter-
nal forces as well as the velocity dependent inertia terms, and λ is the vector of Lagrange
multipliers.

The Lagrange equations of the first kind (Eq. (10)) and the acceleration level constraints
(Eq. (8)) can be written jointly in a matrix form, to obtain an index-1 set of differential-
algebraic equations: [

M CT

C 0

][
q̈
λ

]
=

[
F
Γ

]
. (11)

Equation (11) can be solved for the accelerations and the Lagrange multipliers (it can be
shown that the Lagrange multipliers λ are uniquely solvable only when matrix CM−1CT is
nonsingular, i.e., when matrix C has full row rank). In the case of constraints redundancy,
however, matrix C is rank deficient, thus the leading matrix in Eq. (11) becomes singular,
and Eq. (11) has a nonunique solution. More precisely, the solution for accelerations q̈ is
unique, and the solution for multipliers λ is non-unique. To justify this statement, it is helpful
to define matrix Vn×(n−r), which is an orthogonal complement to C (which is now assumed
to be rank deficient, as indicated in Eq. (6)), so that

CV = 0 and rank

([
VT

C

]
(n+p)×n

)
= n. (12)
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Premultiplying the first equation of Eq. (11) by VT eliminates the Lagrange multipliers
(it is very important that F does not depend on λ, hence λ does not appear on the right-hand
side of Eq. (11) and can be eliminated) and yields the following set of equations (sometimes
called a null space formulation [18, 29]):

[
VT M

C

]
q̈ =

[
VT F
Γ

]
. (13)

Matrix M is invertible, thus—due to Eq. (12)—the rank of the leading matrix in Eq. (13)
equals n. Constraints (8) are consistent; hence Eq. (13) has a unique solution for q̈. Obvi-
ously, it is possible to find another matrix V∗ �= V, spanning the null space of the constraint
matrix C, and to obtain a different version of Eq. (13). In such a case, the following holds:

V∗ = VA(n−r)×(n−r), (14)

where A is an invertible transformation matrix. Thus, when V∗ appears instead of V in
Eq. (13), it is sufficient to premultiply the first equation by A−T , to obtain the original form
of Eq. (13). This indicates that the solution for q̈ does not depend on the choice of matrix V,
thus it is a unique solution.

It should be noted that, since only constraints at acceleration level are represented in
Eq. (11), some stabilization techniques are usually adopted to account for constraints given
by Eqs. (1) and (4).

3 Constraint reactions

3.1 Methods of handling redundant constraints

The presence of redundant constraints induces rank deficiency of constraint matrix C, thus
special methods are needed to handle equations of motion. It is possible to use algorithms
capable to deal with dependent equations, e.g., the pseudoinverse-based methods [32] or the
augmented Lagrangian method [2, 3]. The other possibility is to modify the set of equations
in order to exclude dependent equations [16, 28]; and this approach—usually referred to
as redundant constraints elimination method—was adopted here to simulate the exemplary
mechanism, presented in the subsequent section. It should be emphasized that, regardless of
the method used to handle redundant constraints, the problems with Lagrange multipliers
uniqueness are circumvented, not solved [36].

The redundant constraints elimination method consists in removing dependent equa-
tions from the mathematical description of multibody system, hence only the subset of
independent equations is analyzed. The redundant constraints elimination may be done
“manually”—selected constraints, which are unnecessary when kinematics is concerned,
are simply not included into the model [28]. The other possibility is to eliminate redundant
constraints automatically. The automatic elimination may be performed prior to constraint
equations formulation [23] or during the preprocessing phase of simulation [25]. However,
the most popular and the simplest method of automatic redundant constraints elimination
(implemented in widely used multibody software) is based on the constraint matrix C inves-
tigation [16, 28]. In this method, all constraint equations are formulated and then they are
divided into subsets of independent and dependent equations. The division is usually made
according to the results of the constraint matrix decomposition. The equations classified as
dependent are excluded from the mathematical model.
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It must be stressed that, regardless of redundant constraints selection method, the reac-
tions associated with eliminated constraints are set to zero. It is quite obvious that in real
mechanisms reactions corresponding to constraints neglected during analysis are not likely
to be constantly equal zero. Moreover, it is worth noting that setting the reactions of elim-
inated constraints to zero, transfers their loads to the constraints that remain in the mathe-
matical model. Consequently, redundant constraints elimination affects not only reactions
of excluded constraints but also reactions of remaining constraints.

3.2 Uniquely determined constraint reactions

The generalized constraint reactions, for the whole multibody system, can be calculated as
[10, 16, 28]:

f = CT λ = F − Mq̈. (15)

Similarly, the generalized reactions in a specified kinematic pair can be calculated as

fX = CT
XλX, (16)

where CX denotes a matrix built of these rows of C that correspond to constraint equations
representing the kinematic pair, and λX is a vector of Lagrange multipliers associated with
these constraints. Note that Eq. (4) can always be reordered, so that

C =
[

CX

CY

]
, (17)

where none of the rows of matrix CY corresponds to the considered kinematic pair.
In the case of redundant constraints presence, the generalized reactions for the whole

system (f) are uniquely determined, however, some or all reactions between pairs of inter-
acting bodies (fX) cannot be uniquely determined using a rigid body model. In other words,
it is impossible to tell how the total reaction f is distributed between the individual constraint
reactions fX . This is an immediate consequence of the nonuniqueness of multipliers λ, dis-
cussed in Sect. 2.2.

Fortunately, in many cases, some of the constraint reactions are solvable (i.e., they can
be uniquely determined using a rigid body model) despite the presence of redundant con-
straints in the system taken as a whole. It is possible to generalize the methods of reactions
solvability analysis, presented in [34] (for holonomic systems only), to the case of systems
subjected to both holonomic and linear nonholonomic constraints.

The concept of direct sum, known from linear algebra [31], can be exploited to check
whether the particular examined reactions can be uniquely calculated. To recall the defini-
tion of direct sum, assume that Z is a linear vector space in Rn whereas X and Y are the
subspaces of Z. We say that Z is a direct sum of subspaces X and Y , and we denote it as
Z = X ⊕ Y , when the following conditions are fulfilled:

1. Z is a sum of subspaces X and Y (we denote it as Z = X + Y ), which means that any
vector z ∈ Z can be represented as z = x + y, where x ∈ X and y ∈ Y .

2. If x1 + y1 = x2 + y2, provided that x1, x2 ∈ X, and y1, y2 ∈ Y , then x1 = x2 and y1 = y2.

To formulate analytical condition for checking constraint reactions solvability, let us con-
sider a kinematic pair represented by holonomic or nonholonomic constraint equations. Let
X be a linear space spanned by these columns of matrix CT that correspond to the constraints
representing this kinematic pair (X = span(CT

X)), and let Y be a linear space spanned by the
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other columns of matrix CT (Y = span(CT
Y )). Moreover, let Z be a linear space spanned by

all columns of matrix CT (Z = span(CT )). Note that in the case of constraint redundancy,
the following inequality is valid (compare Eq. (6)):

dim(Z) = rank(C) = r < m + h, (18)

thus the same vector of generalized reactions f can be obtained for different vectors of La-
grange multipliers λ (see Eq. (15)).

It can be shown that:

If Z is a direct sum of X and Y (Z = X ⊕Y ), then the generalized constraint reaction
fX in the considered kinematic pair is uniquely determined.

To prove the above statement, the properties of direct sum can be utilized. Let us write the
Lagrange multipliers vector as λ = [λT

X λT
Y ]T , where λX corresponds to the vectors spanning

the linear space X and λY corresponds to the vectors spanning the linear space Y . Assume
that λ∗ and λ∗∗ are two different vectors of Lagrange multipliers. The generalized reactions
corresponding to these multipliers are the following:

f∗ = CT λ∗ = CT
Xλ∗

X + CT
Y λ∗

Y = f∗X + f∗Y (19)

and

f∗∗ = CT λ∗∗ = CT
Xλ∗∗

X + CT
Y λ∗∗

Y = f∗∗
X + f∗∗

Y . (20)

Since f∗ = f∗∗, the 2nd condition of the direct sum definition yields f∗X = f∗∗
X (and similarly,

f∗Y = f∗∗
Y ).

The presented considerations show that, when the direct sum condition is fulfilled, the
term fX = CT

XλX (generalized reaction force in the considered kinematic pair—see Eq. (16))
can be uniquely determined. It should be stressed, however, that the problem of finding
Lagrange multipliers λX may not have a unique solution. The Lagrange multipliers λX can
be uniquely determined only if CX is a full rank matrix.

The above results can be utilized to check whether constraint reactions in the selected
kinematic pair can be uniquely determined, regardless of possibility that the problem of
calculating Lagrange multipliers may have infinitely many solutions.

3.3 Numerical detection of uniquely determined constraint reactions

Three numerical methods of examination whether the direct sum condition is fulfilled, and
thus whether reactions in the particular kinematic pair are uniquely solvable, were proposed
in [34]. The first method is based on ranks comparison of matrices CX , CY , and C, the
second is based on singular value decomposition of matrix C; these methods will not be dis-
cussed here. This paper presents an improved version of the third method (the most effective
one), which is based on QR decomposition of the constraint matrix C.

The QR method decomposes matrix C into matrices [12, 17]:

CE = QR or CT = ERT QT , (21)

where Q is an orthogonal ((m+h)×(m+h)) matrix, E is an orthogonal (n×n) permutation
matrix (it consists of zeros and ones only) and R is a rectangular ((m + h) × n) upper
triangular matrix.
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In the literature, one can easily find a QR decomposition without the use of permuta-
tion matrix E, however, this variant of decomposition is not convenient for us. The column
permutation E is chosen in such a way that absolute values of diagonal elements in R are de-
creasing. This fact is important for our considerations, since it assures that, for decomposed
matrix C with rank r , the last p (see Eq. (7)) rows of matrix R consist of zeros only.

The QR decomposition of constraint matrix C is useful when formulating a numerical
method of checking whether an arbitrarily chosen vector w ∈ Z can be decomposed into sum
of two vectors wX ∈ X and wY ∈ Y , both of them given uniquely. The proposed criterion is
based on the 2nd condition of direct sum of spaces definition.

Let us consider vector w ∈ Z and write it as a linear combination of matrix CT columns:

w = wX + wY = CT
XnX + CT

Y nY = CT n = ERT QT n, (22)

where n(m+h)×1 = [nT
X nT

Y ]T is a vector of linear combination coefficients.
An auxiliary vector d, defined below, is more suitable for further considerations:

d(m+h)×1 = QT n. (23)

The transformation (23) maps d to n and n to d uniquely, since Q is a square and orthog-
onal matrix. This transformation can be used to rewrite Eq. (22) in the following form:

w = CT n = ERT d. (24)

We can state that Eq. (24) uniquely defines only the first r elements of vector d, since only
the first r rows of matrix R are nonzero. The remaining p elements of d can be arbitrarily
chosen. Vector d satisfying Eq. (24), and thus vector n, can be written in the following form:

d = d̄ + d̂, d̄ = [
d1 · · · dr 0 · · · 0

]T
,

d̂ = [
0 · · · 0 dr+1 · · · dm+h

]T
, (25)

n = Qd =
[

nX

nY

]
=

[
QX

QY

]
d =

[
QX

QY

]
(d̄ + d̂),

where elements d1, . . . , dr are uniquely defined by (24) and elements dr+1, . . . , dm+h can be
arbitrarily chosen; QX denotes a matrix consisting of only these rows of Q that correspond
to the considered kinematic pair.

Hence, vector wX can be written in the form:

wX = CT
XnX = CT

XQXd̄ + CT
XQXd̂. (26)

The first r elements of vector d̂ are zeros, the remaining p can be chosen arbitrarily. Thus,
we can state that vector wX can be determined uniquely only when the arbitrary elements of
d̂ vanish due to multiplication by zero. This observation implies the following definition of
an auxiliary matrix BX :

[BX]n×p = CT
XQcol

X , (27)

where matrix Qcol
X consists of last p columns of QX .

In conclusion, we can say that vector wX can be determined uniquely when matrix BX

consists of zeros only. This result can be easily used for detecting kinematic pairs for which
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reactions can be uniquely determined. Firstly, the QR decomposition of the constraints ma-
trix C should be calculated. Then, rows of matrices Q and C, corresponding to the kinematic
pair being investigated, ought to be extracted. Finally, matrix BX should be calculated and
examined if it contains only zero elements.

It should be mentioned that the method presented here, as well as two other methods
described in [34], merely require operations on the constraint matrix C, therefore, it is rela-
tively easy to implement them in a multibody code.

4 Example

4.1 Structure and kinematics of the mechanism

Since applications of multibody methods to robotics have always been interesting to us [7,
9, 22], a mobile robot was a natural candidate to serve as an example in this paper. The
constraint reaction solvability method was utilized to analyze a simplified model of a four-
wheel mobile robot connected with a one-wheel trolley (Fig. 1). The system is modeled as
a planar mechanism, in which wheels are replaced by semicircular knife edges. Edges W1

and W2 can change their inclinations with respect to the robot platform 1, whereas edges
W3 and W4 are rigidly attached to the platform. The linkage consisting of bodies 2, 3, 4, 5,
and 6, driven in joint H , is used to rotate edges W1 and W2 in a synchronized manner. Due

Fig. 1 Simple model of the mobile robot and its kinematic scheme



162 M. Wojtyra, J. Frączek

Fig. 2 Relative displacement in the translational joint vs. time

to appropriately chosen linkage dimensions, it is possible to change the wheel inclination by
±90°. The edge W5 is rigidly attached to the trolley platform 7. The trolley is connected to
the robot via revolute joint A.

A global inertial reference frame π0 = x0y0 is established on the ground 0, and body-
fixed local reference frames πi = xiyi are embedded in the moving bodies (Fig. 1). The
absolute Cartesian coordinates that describe the mechanism form vector q:

q = [
qT

1 qT
2 qT

3 qT
4 qT

5 qT
6 qT

7

]T
, qi = [

rT
i ϕi

]T
, (28)

where ri = [xi yi ]T represents the position of the local reference frame πi origin with re-
spect to the global frame π0, and ϕi is the angle of the local frame πi rotation with respect
to the global frame π0.

Seven revolute joints (A, B , C, D, E, F , G) and one translational joint (H) are de-
scribed by holonomic (geometric) constraints. Appropriate equations are presented in the
Appendix. Driving constraints (represented by holonomic and rheonomic constraints, de-
scribed in the Appendix) and are imposed on relative motion in joint H . The time history of
the displacement d(t) of body 6 with respect to body 1 is presented in Fig. 2. The steering
is chosen so that the robot, which initially is moving along x0 axis, firstly turns right, then
travels forward, and finally turns left and starts to move along a line parallel to x0.

The holonomic constraints imposed on the modeled multibody system can be written
jointly as a set of m = 17 nonlinear algebraic equations:

Φ(q, t) =
[
ΦrT

A ΦrT

B ΦrT

C ΦrT

D ΦrT

E ΦrT

F ΦrT

G Φ tT

H Φd
H

]T = 017×1. (29)

Formulas for the constraint Jacobian matrix Φq and for vector Φ t (see Eq. (2)) as well as
for Γ vector (see Eq. (9)) are presented in the Appendix.

The ground-wheel interactions are represented by knife-edge Pfaffian constraints. The
knife-edge constraint equation can be derived by requiring that linear velocity at the point of
contact is parallel to the edge. The following scalar equation, linear in velocities, is obtained:

n(0)T

K v(0)
K = (

Rin
(i)
K

)T (
ṙi +ΩRis

(i)
K ϕ̇i

) =
[
(Rin

(i)
K )T n(i)T

K Ωs(i)
K

][
ṙi

ϕ̇i

]
= Ψ K q̇i = 0, (30)

where v(0)
K is the linear velocity at contact point K , and n(0)

K is a unit vector perpendicular
to the allowed direction of motion (the components of both vectors are expressed in the
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Table 1 Geometric parameters of knife-edge constraints

Edge Body i Point K s(i)
K

n(i)
K

W1 2 B [0 0]T [0 1]T
W2 3 C [0 0]T [0 1]T
W3 1 L [0 − 4a]T [0 1]T
W4 1 M [0 4a]T [0 1]T
W5 7 N [0 0]T [0 1]T

a = 0.05 (m)

global frame π0). The other symbols (i,Ω,Ri , s(i)
K ) are explained in the Appendix (note that

RT
i ΩRi = Ω). The components of vectors are presented in Table 1 (dimensions of the robot

are presented in the Appendix).
In the case of knife-edge constraint defined by Eq. (30), Γ is a scalar given by the fol-

lowing formula:

Γ K = −(
ΩRin

(i)
K

)T
ṙi ϕ̇i . (31)

4.2 Constraint reactions solvability analysis

Detailed formulas for constraint Jacobian entries are provided in the Appendix. There are
m = 17 holonomic constraint equations and n = 21 coordinates, thus the Jacobian matrix
Φq has 17 rows and 21 columns.

The nonholonomic constraints are present due to h = 5 knife-edge kinematic pairs, thus
Eq. (30) can be used to calculate the nonzero entries of the Pfaffian constraints matrix for
the whole system:

Ψ =

⎡
⎢⎢⎢⎢⎣

0 Ψ B 0 0 0 0 0
0 0 Ψ C 0 0 0 0

Ψ L 0 0 0 0 0 0
Ψ M 0 0 0 0 0 0

0 0 0 0 0 0 Ψ N

⎤
⎥⎥⎥⎥⎦

5×21

. (32)

Appending the Pfaffian constraints matrix to the Jacobian matrix gives the constraint
matrix C:

C =
[

Φq

Ψ

]
22×21

. (33)

Let q0 denote the vector of coordinates representing the mechanism configuration shown
in Fig. 1:

q0 = [
20a 0 0 24a 0 0 16a 0 0 · · ·
20a + dx dy 0 20a − dx dy 0 20a 0 0 5a 0 0

]T

,

(34)

where a = 0.05 (m), dx = cx/2, dy = cy/2 − by , and quantities cx , cy , by are defined in the
Appendix.
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It can be calculated that

rank
(
Φq

(
q0

)) = 17, rank
(
Ψ

(
q0

)) = 4, r = rank
(
C

(
q0

)) = 20 < 17 + 4. (35)

Matrix Φq is a full-rank matrix, whereas Ψ is rank-deficient. Obviously, the constraint
matrix C is rank-deficient as well. The same results can be obtained for any other nonsingu-
lar configuration q of the mechanism. This indicates that the considered multibody system
is overconstrained. The degree of redundancy (see Eq. (7)) can be calculated as

p = m + h − r = 17 + 5 − 20 = 2. (36)

Dependency of constraints was detected, thus the constraint reaction solvability analysis
was performed prior to dynamic simulations. Firstly, QR decomposition of the constraint
matrix C was calculated (see Eq. (21)). Then matrix C was divided into fourteen subma-
trices, corresponding to seven revolute joints, one translational joint, one driving constraint
equation, and five knife-edge constraints, respectively. Similarly, matrix Q was divided into
fourteen submatrices:

C22×21 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[CrevA]2×21
...

[CrevG]2×21

[CtraH ]2×21

[Cdrvng]1×21

[CedW1 ]1×18
...

[CedW5 ]1×21

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Q22×22 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[QrevA]2×22
...

[QrevG]2×22

[QtraH ]2×22

[Qdrvng]1×22

[QedW1 ]1×22
...

[QedW5 ]1×22

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (37)

Next, Eq. (27) was utilized to calculate eleven matrices BX (note that degree of redun-
dancy p = 2, thus only two last columns of QX matrices were used to build corresponding
Qcol

X matrices):

BrevB ≈
[

0 0.408 0.082 0 −0.408 01×16

0 0 0 0 0 01×16

]T

,

BrevC ≈
[

0 0.408 −0.082 01×4 −0.408 01×13

0 0 0 01×4 0 01×13

]T

,

BedW1 ≈
[

01×4 0.408 01×17

01×4 0 01×17

]T

, BedW2 ≈
[

01×7 0.408 01×14

01×7 0 01×14

]T

,

BedW3 ≈
[

0 −0.408 01×20

0 0.707 01×20

]T

, BedW4 ≈
[

0 −0.408 01×20

0 −0.707 01×20

]T

,

BrevA = BrevD = BrevE = BrevF = BrevG = BtraH = Bdrvng = BedW5 = 022×2.

(38)

Matrices corresponding to knife-edge kinematic pairs W1–W4 as well as matrices cor-
responding to revolute joints B and C have nonzero elements, thus constraint reactions
in these pairs cannot be uniquely determined using the rigid body model. Matrices corre-
sponding to revolute joints A, D, E, F , and G, to translational joint H , and to the driving
constraint equation consist of zeros only, thus related reactions can be uniquely determined.
This concludes the constraint reactions solvability analysis.
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Table 2 Masses and central moments of inertia

Body i 1 2 3 4 5 6 7

mi (kg) 10 1 1 1 1 1 5

Ji (kg m2) 0.25 0.005 0.005 0.005 0.005 0.005 0.05

4.3 Simulated motion of the mechanism

Masses of mechanism bodies and their central moments of inertia are presented in Table 2.
In each moving part, the center of its mass coincides with the local reference frame origin.

Equations of motion for the investigated mechanism can be written in the form of
Eq. (11), with no external forces applied to the system (note that the edge-ground forces
are modeled as constraint reactions), with M21×21 = diag(m1,m1, J1, . . . ,m7,m7, J7), and
with terms C and Γ discussed previously.

The mechanism is overconstrained, therefore, the leading matrix in the equations of mo-
tion is singular. The constraints elimination method (see Sect. 3.1) was chosen to handle
the redundancy problem. Redundant constraints may be selected in many ways, thus sev-
eral variants of dynamic simulations were carried out. In each simulation, the equations of
motion were integrated (the fourth-fifth order Runge–Kutta formula [6], implemented in
MATLAB® as ode45 function, was used) with the initial configuration given by q0 (see
Eq. (34)) and initial velocity q̇0:

q̇0 = [
v 0 0 v 0 0 v 0 0 v 0 0 · · ·
v 0 0 v 0 0 v 0 0

]T
, v = 0.1 (m/s). (39)

Diverse joint reactions were calculated for different selections of redundant constraints,
however, in each case the same mechanism motion (to within numerical precision) was
obtained. This illustrates that—as it was discussed in Sect. 2.2—in the case of an over-
constrained mechanism with frictionless kinematic pairs, the individual reactions are non-
unique but their resultant effect (when motion is concerned) is unique.

The trajectory of robot platform center of mass as well as the trajectories of knife-edge
contact points, observed during simulations, are presented in Fig. 3.

4.4 Calculated constraint reactions

Three variants (out of several other possible) of redundant equations elimination were stud-
ied and presented here. Since the degree of redundancy equals two, in each possible variant
two constraint equations need to be eliminated.

In the first variant, scalar constraint equations no. 6 and 21 were eliminated from the set
of constraints at velocity level, i.e., from Eq. (4). Appropriate elimination of matrix C (see
Eq. (33)) rows no. 6 and 21, as well as vector Γ elements no. 6 and 21, was performed.
Consequently, the Lagrange multipliers associated with the neglected equations were can-
celed, and a reduced set of equations of motion (Eq. (11)), with nonsingular leading matrix,
was obtained. Note that the eliminated constraint equation no. 6 represents revolute joint C,
thus—as a result of the elimination process—the y component of joint C reaction was arbi-
trarily set to zero. Constraint equation no. 21 represents knife-edge kinematic pair W4, thus
reaction in this pair was set to zero as well.
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Fig. 3 Trajectories of selected points of the robot

In the second variant of redundant equations elimination, constraints no. 18 and 21, repre-
senting knife-edges W1 and W4, respectively, were eliminated. In the third variant, constraint
equations no. 19 and 21, associated with knife-edges W2 and W4, respectively, were deleted.
Again, appropriate reactions were set to zero due to purely mathematical operations, not
supported by the physics of the system.

For all three variants of redundant constraints elimination, dynamic simulations were
carried out and constraint reactions were observed (as it was mentioned earlier, simulated
motion was the same in all cases). Reactions observed in joints A, D, E, F , G, H , the
steering force associated with driving constraints, and knife-edge W5 reaction had the same
time histories in all simulations, whereas reactions in joints B and C, as well as knife-
edges W1–W4 reactions, were different in each case. The results of simulations corroborate
correctness of constraint reactions solvability analysis performed in Sect. 4.2.

Global x and y components of revolute joint B reaction force and perpendicular to
the edge component of the knife-edge W3 reaction are presented in Fig. 4 as examples of
nonunique reactions. In the same Fig. 4, components of revolute joint D reaction force and
the knife-edge W5 reaction are shown as examples of uniquely solvable reactions.

The alternatively eliminated constraint equations are associated with kinematic pairs C,
W1, W2, and W4. It is worth noting that in each case elimination affected, among others,
reactions in pairs B and W3. This result shows that the process of elimination influences
not only reactions of neglected constraints but also reactions of constraints remaining in the
mathematical model.

It should be mentioned that the redundant constraints elimination method can be seen
as a substitution of the original mechanism by a kinematically equivalent mechanism with-
out redundant constraints. The problem is that—when reactions are concerned—there is no
equivalent model without redundant constraints. Elimination of a constraint results in setting
its reaction to zero, which is unlikely to be observed in the original mechanism.

5 Conclusions and comments

The presence of redundant constraints leads to nonuniqueness of some or all reactions, as
long as the mechanism parts are treated as rigid bodies. Mathematically, redundant con-
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Fig. 4 Nonunique (left) and unique (right) constraint reactions

straints existence results in system of equations with infinite number of solutions. Thus, the
rigid body equations of motion are insufficient to calculate realistic joint reactions, observed
in real-world overconstrained multibody systems.

Although the problem of reactions uniqueness—crucial for results credibility—is often
encountered in practical calculations, surprisingly small attention is paid to it. In the great
majority of general purpose multibody simulation packages detailed information whether
particular joint reaction is solvable or unsolvable is unavailable, and the problem of reactions
solvability is simply neglected. The software users are frequently advised to replace over-
constrained models with kinematically equivalent models without redundant constraints.
The problem that the nonredundant model does not reflect the real system is usually not
discussed. If the software user fails to follow the advice, the redundant constraints detected
in the model are handled automatically, using one of several available methods. This proce-
dure may easily lead to erroneous results. For example, quite often the multibody software
user is not aware that specified joint reaction force is nonunique and his attempt to introduce
friction into this joint is pointless.

This paper presents a theoretical background and numerical methods for detecting kine-
matic pairs of rigid body mechanism for which reactions can be uniquely determined de-
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spite the redundancy of constraints. The reactions solvability analysis methods, previously
proposed for holonomic systems, are generalized to mechanisms subjected to linear non-
holonomic constraints. It should be emphasized that the obtained results are valid for both
integrable and nonintegrable Pfaffian constraints. An example of a mobile robot analysis is
provided to illustrate the discussed problems.

The proposed reactions solvability methods are based on constraint matrix investigation,
thus they can be easily implemented in existing multibody software. Required computational
effort is small, since the constraint matrix must be computed anyway. Moreover, in most
cases, reactions solvability analysis can be performed only once, during the preprocessing
phase of simulation (provided that the initial mechanism configuration is nonsingular), along
with redundant constraint elimination process.

The uniqueness of reactions depends only upon the kinematic structure of the mecha-
nism, thus it is irrelevant which type of coordinates is utilized to model the multibody sys-
tem. The methods presented in the paper employ absolute coordinates’ formulation. Adopt-
ing them to use other types of coordinates, for example, relative ones, is not straightforward
and requires additional research.

Finally, going beyond the scope of this paper, we should point out that in order to find
unique values of all reactions, rigid body assumption must be rejected. Engineering expe-
riences suggest that flexibility of bodies, elasticity of bearings, assembly stresses, thermal
loads, joint clearances as well as geometric imperfections (in [24], it was shown that, in the
case of redundantly constrained mechanisms, the rigid body assumption must be accompa-
nied by a postulate that links are geometrically perfect) should be taken into account, when
solving for realistic reactions. In many models, elasticity of bodies is considered, however,
some effects associated with constraint redundancy are still observed, even when mecha-
nisms are modeled as entirely flexible systems, e.g., [1, 21]. Quite often, in a multibody
model, only selected rigid bodies are replaced by their deformable substitutes, e.g., [37],
which not always leads to correct results. It can be shown that problems with finding realis-
tic reactions, typical for overconstrained systems, may be observed when analyzing partially
flexible models without redundant constraints [35]. Hence, problems with finding reactions
in overconstrained mechanisms are not limited to purely rigid body models.
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Appendix: Holonomic constraints and their derivatives

The investigated mechanism, presented in Fig. 1, consists of seven moving bodies inter-
connected by seven revolute joints and one translational joint. The joints are represented
by geometric constraint equations. Moreover, driving constraints are imposed on relative
motion in the translational joint.

Let us consider a revolute joint formed by bodies i and j at point Pi = Qj (for example,
in Fig. 1 joint D is formed by bodies 2 and 4, P2 = Q4 = D). The constraint equations
describing this joint can be derived by requiring that the point Pi on body i coincides with
point Qj on body j :

Φr = ri + Ris
(i)
P − rj − Rj s(j)

Q = 02×1, (40)
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Table 3 Geometric parameters of joints

i j s(i)
P

s(j)
Q

vij ψij

A 7 1 [7a 0]T [−8a 0]T – –

B 2 1 [0 0]T [4a 0]T – –

C 3 1 [0 0]T [−4a 0]T – –

D 4 2 [cx/2 − cy/2]T [−bx − by ]T – –

E 5 3 [−cx/2 − cy/2]T [bx − by ]T – –

F 6 4 [0 cy − by ]T [−cx/2 cy/2]T – –

G 6 5 [0 cy − by ]T [cx/2 cy/2]T – –

H 6 1 [0 10a]T [0 − 10a]T [1 0]T 0

a = 0.05 (m), ϕ = arctan(1/4), bx = a sinϕ, by = a cosϕ, cx = 4a − bx , cy =
√

(5a)2 − c2
x

where s(k)
U is the position vector of point Uk in the local reference frame πk and Rk is the

direction cosine matrix transforming quantities from πk to π0:

Rk = Rk(ϕk) =
[

cosϕk − sinϕk

sinϕk cosϕk

]
. (41)

Let us consider a translational joint, formed by bodies i and j , and assume that point Pi

belongs to body i, and point Qj as well as vector vij belong to body j . Points Pi and Qj lie
on a line parallel to the axis of relative joint motion, and vector vij is perpendicular to this
axis. The translational joint can be described by two scalar constraint equations. The first one
represents the fact that vector PiQj is perpendicular to vector vij , and the second equation
represents the fact that body i does not change its orientation with respect to body j :

Φ t =
[

(rj + Rj s(j)

Q − ri − Ris
(i)
P )T Rj v(j)

ij

ϕi − ϕj − ψij

]
= 02×1, (42)

where ψij is a constant angular value.
The driving constraint (single scalar equation) for a translational joint can be derived by

requiring that the distance between points Pi and Qj , at every time instant, is given by a
scalar, time-dependent function d(t):

Φd = (
rj + Rj s(j)

Q − ri − Ris
(i)
P

)T
Rj u(j)

ij − d(t) = 0, (43)

where uij is a unit vector parallel to the line of relative motion.
Geometric parameters characterizing joints are presented in Table 3. Note that a =

0.05 (m), and BD = CE = a, DF = EG = 5a, BC = LM = 8a, AC = 4a, AN = 7a (see
Fig. 1).

The nonzero Jacobian matrix entries (see Eq. (2)) corresponding to Eq. (40) can be cal-
culated as

Φr
qi

= [
Φr

ri
Φr

ϕi

] = [
I2×2 ΩRis

(i)
P

]
,

Φr
qj

=
[
Φr

rj
Φr

ϕj

]
=

[
−I2×2 −ΩRj s(j)

Q

]
, Ω =

[
0 −1
1 0

]
.

(44)
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The nonzero Jacobian matrix entries corresponding to Eq. (42) are the following:

Φ t
qi

= [
Φ t

ri
Φ t

ϕi

] =
[−(Rj v(j)

ij )T −(Rj v(j)

ij )T ΩRis
(i)
P

01×2 1

]
,

Φ t
qj

=
[
Φ t

rj
Φ t

ϕj

]
=

[
(Rj v(j)

ij )T −(Rj v(j)

ij )T Ω(rj − ri − Ris
(i)
P )

01×2 −1

]
.

(45)

The nonzero Jacobian matrix entries corresponding to Eq. (43), and the nonzero ele-
ments of the driving constraints partial derivative with respect to time (see Eq. (2)), are the
following:

Φd
t = −dt , Φd

qi
= [

Φd
ri

Φd
ϕi

] =
[
−(Rj u(j)

ij )T −(Rj u(j)

ij )T ΩRis
(i)
P

]
,

Φd
qj

=
[
Φd

rj
Φd

ϕj

]
=

[
(Rj u(j)

ij )T −(Rj u(j)

ij )T Ω(rj − ri − Ris
(i)
P )

]
.

(46)

Vectors Γ (see Eq. (9)), representing revolute and translational joints as well as the driv-
ing constraints, can be respectively expressed as

Γ r = Ris
(i)
P ϕ̇2

i − Rj s(j)

Q ϕ̇2
j ,

Γ t =
[

(Rj v(j)

ij )T (2Ω(ṙj − ṙi )ϕ̇j + (rj − ri )ϕ̇
2
j − Ris

(i)
P (ϕ̇j − ϕ̇i)

2)

0

]
,

Γ d = (
Rj u(j)

ij

)T (
2Ω(ṙj − ṙi )ϕ̇j + (rj − ri )ϕ̇

2
j − Ris

(i)
P (ϕ̇j − ϕ̇i)

2
) + dtt .

(47)
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7. Frączek, J., Wojtyra, M.: Teaching multibody dynamics at Warsaw University of Technology. Multibody
Syst. Dyn. 13(3), 353–361 (2005)
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