Skip to main content
Log in

Scalable Data Processing for Community Sensing Applications

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

Participatory Sensing is a new computing paradigm that aims to turn personal mobile devices into advanced mobile sensing networks. For popular applications, we can expect a huge number of users to both contribute with sensor data and request information from the system. In such scenario, scalability of data processing becomes a major issue. In this paper, we present a system for supporting participatory sensing applications that leverages cluster or cloud infrastructures to provide a scalable data processing infrastructure. We propose and evaluate three strategies for data processing in this architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Groovy is a dynamic, object-oriented programming language that runs on top of the Java Virtual Machine and includes DSL design features.

References

  1. Akyildiz IF, Su W, Sankarasubramaniam Y, Cayirci E (2002) A survey on sensor networks. IEEE Commun Mag 40(8):102–114

    Article  Google Scholar 

  2. Campbell AT, Eisenman SB, Lane ND, Miluzzo E, Peterson RA, Lu H, Zheng X, Musolesi M, Fodor K, Ahn G-S (2008) The rise of people-centric sensing. IEEE Internet Computing 12(4):12–21

    Article  Google Scholar 

  3. Cherniack M, Balakrishnan H, Balazinska M, Carney D, Çetintemel U, Xing Y, Zdonik SB (2003) Scalable distributed stream processing. In: Proceedings of the first biennial conference on innovative data systems research, CIDR’03, pp 1–12

  4. Chun B-G, Ihm S, Maniatis P, Naik M, Patti A (2011) Clonecloud: elastic execution between mobile device and cloud. In: Proceedings of the sixth conference on computer systems, EuroSys’11. ACM, New York, NY, USA, pp 301–314

    Chapter  Google Scholar 

  5. Condie T, Conway N, Alvaro P, Hellerstein JM, Elmeleegy K, Sears R (2010) Mapreduce online. In: Proceedings of the 7th USENIX symposium on networked systems design and implementation, NSDI 2010. USENIX Association, pp 313–328

  6. Cornelius C, Kapadia A, Kotz D, Peebles D, Shin M, Triandopoulos N (2008) Anonysense: privacy-aware people-centric sensing. In: Proceedings of the 6th international conference on mobile systems, applications, and services, MobiSys ’08. ACM, New York, NY, USA, pp 211–224

    Google Scholar 

  7. Cuervo E, Balasubramanian A, Cho D-K, Wolman A, Saroiu S, Chandra R, Bahl P (2010) Maui: making smartphones last longer with code offload. In: Proceedings of the 8th ACM international conference on Mobile systems, applications, and services, MobiSys ’10. ACM, New York, NY, USA, pp 49–62

    Google Scholar 

  8. Cuff D, Hansen M, Kang J (2008) Urban sensing: out of the woods. Commun ACM 51(3):24–33

    Article  Google Scholar 

  9. Dean J, Ghemawat S (2004) Mapreduce: simplified data processing on large clusters. In: Proc. OSDI 2004

  10. Eisenman SB, Miluzzo E, Lane ND, Peterson RA, Ahn G-S, Campbell AT (2007) The bikenet mobile sensing system for cyclist experience mapping. In: Proc. ACM SenSys 2007

  11. Eriksson J, Girod L, Hull B, Newton R, Madden S, Balakrishnan H (2008) The Pothole patrol: using a mobile sensor network for road surface monitoring. In: Proceedings of the 6th international conference on mobile systems, applications, and services, MobiSys ’08. ACM, New York, NY, USA, pp 29–39

    Google Scholar 

  12. Ferreira H, Duarte S, Preguiça N, Navalho D (2012) Scalable data processing for community sensing applications. In: Puiatti A, Gu T (eds) Mobile and ubiquitous systems: computing, networking, and services, Lecture notes of the institute for computer sciences, social informatics and telecommunications engineering, vol 104. Springer Berlin, Heidelberg, pp 75–87

    Chapter  Google Scholar 

  13. Ferreira H, Duarte S, Preguiça N (2010) 4Sensing—decentralized processing for participatory sensing data. In: Proceedings of the 2010 IEEE 16th international conference on parallel and distributed systems, ICPADS ’10. IEEE Computer Society, Washington, DC, pp 306–313

    Chapter  Google Scholar 

  14. Ganti RK, Pham N, Tsai Y-E, Abdelzaher TF (2008) Poolview: stream privacy for grassroots participatory sensing. In: Proc. ACM SenSys 2008

  15. Groovy (2012) http://groovy.codehaus.org. Accessed 1 Aug 2012

  16. Grosky W, Kansal A, Nath S, Liu J, Zhao F (2007) Senseweb: an infrastructure for shared sensing. IEEE Multimed 14(4):8–13

    Article  Google Scholar 

  17. Gruteser M, Grunwald D (2003) Anonymous usage of location-based services through spatial and temporal cloaking. In: Proceedings of the 1st international conference on mobile systems, applications and services, MobiSys ’03. ACM, New York, NY, USA, pp 31–42

    Chapter  Google Scholar 

  18. Gupta A, Liskov B, Rodrigues R (2003) One hop lookups for peer-to-peer overlays. In: of the 9th conference on hot topics in operating systems, vol 9. USENIX Association, HOTOS’03, Berkeley, CA, USA, pp 1–6

  19. Hoh B, Gruteser M, Herring R, Ban J, Work D, Herrera J-C, Bayen AM, Annavaram M, Jacobson Q (2008) Virtual trip lines for distributed privacy-preserving traffic monitoring. In: Proceedings of the 6th international conference on mobile systems, applications, and services, MobiSys ’08. ACM, New York, NY, USA, pp 15–28

    Google Scholar 

  20. Hull B, Bychkovsky V, Zhang Y, Chen K, Goraczko M, Miu AK, Shih E, Balakrishnan H, Madden S (2006) CarTel: a distributed mobile sensor computing system. In: Proc. ACM SenSys 2006

  21. Intanagonwiwat C, Govindan R, Estrin D (2000) Directed diffusion: a scalable and robust communication paradigm for sensor networks. In: Proceedings of the 6th annual international conference on mobile computing and networking, MobiCom ’00. ACM, New York, NY, USA, pp 56–67

    Chapter  Google Scholar 

  22. Isard M, Budiu M, Yu Y, Birrell A, Fetterly D (2007) Dryad: distributed data-parallel programs from sequential building blocks. In: Proceedings of the 2nd ACM SIGOPS/EuroSys European conference on computer systems 2007, EuroSys ’07. ACM, New York, NY, USA, pp 59–72

    Chapter  Google Scholar 

  23. Madden SR, Franklin MJ, Hellerstein JM, Hong W (2005) Tinydb: an acquisitional query processing system for sensor networks. ACM Trans Database Syst 30:122–173

    Article  Google Scholar 

  24. Marie Kim YJL, Wook Lee J, Ryou J-C (2008) Cosmos: a middleware for integrated data processing over heterogeneous sensor networks. ETRI J 30(5):696–706

    Article  Google Scholar 

  25. Mohan P, Padmanabhan V, Ramjee R (2008) Nericell: rich monitoring of road and traffic conditions using mobile smartphones. In: Proc. ACM SenSys 2008

  26. Mun M, Reddy S, Shilton K, Yau N, Burke J, Estrin D, Hansen M, Howard E, West R, Boda P (2009) Peir, the personal environmental impact report, as a platform for participatory sensing systems research. In: Proceedings of the 7th international conference on mobile systems, applications, and services, MobiSys ’09. ACM, New York, NY, USA, pp 55–68

    Chapter  Google Scholar 

  27. Neumeyer L, Robbins B, Nair A, Kesari A (2010) S4: distributed stream computing platform. In: Proceedings of the 2010 IEEE international conference on data mining workshops (ICDMW), pp 170–177

  28. OpenStreeMap (2012) http://www.openstreetmap.org. Accessed 1 Aug 2012

  29. Stuedi P, Mohomed I, Balakrishnan M, Mao ZM, Ramasubramanian V, Terry D, Wobber T (2011) Contrail: enabling decentralized social networks on smartphones. In: Kon F, A-M Kermarrec A-M (eds) Middleware 2011 of Lecture Notes in Computer Science, vol 7049. Springer Berlin, Heidelberg, pp 41–60

    Google Scholar 

  30. Su Y-Y, Flinn J (2005) Slingshot: deploying stateful services in wireless hotspots. In: Proceedings of the 3rd international conference on mobile systems, applications, and services, MobiSys ’05. ACM, New York, NY, USA, pp 79–92

    Chapter  Google Scholar 

  31. Tanin E, Harwood A, Samet H (2007) Using a distributed quadtree index in peer-to-peer networks. VLDB J 16(2):165–178

    Article  Google Scholar 

  32. Tayeb J, Ulusoy Ö, Wolfson O (1998) A quadtree-based dynamic attribute indexing method. Comput J 41(3):185–200

    Article  MATH  Google Scholar 

  33. Yick J, Mukherjee B, Ghosal D (2008) Wireless sensor network survey. Comput Netw 52(12):2292–2330

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewers for their helpful comments. This work was supported partially by project #PTDC/EIA/76114/2006 and PEst-OE/EEI/UI0527/2011—CITI/FCT/UNL/2011–12.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sérgio Duarte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duarte, S., Navalho, D., Ferreira, H. et al. Scalable Data Processing for Community Sensing Applications. Mobile Netw Appl 18, 357–372 (2013). https://doi.org/10.1007/s11036-012-0424-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-012-0424-9

Keywords

Navigation