Skip to main content
Log in

Detection of four polymorphisms in 5′ upstream region of PNPLA2 gene and their associations with economic traits in pigs

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

As an important triglyceride hydrolase in mammalian cells, patatin-like phospholipase domain-containing 2 (PNPLA2) predominantly performs the first step in triglyceride hydrolysis. The objective of this study was to detect and evaluate the effects of mutations in the 5′ upstream region of porcine PNPLA2 gene with fat deposition and carcass traits. Four single nuclear polymorphisms were identified, including g.161969 T>C, g.161962 A>G, g.161953 C>G and g.161904 G>T, and subsequently genotyped in five pure breeds. Three haplotypes were constructed, including H1(CGGT), H2(TACG) and H3(CACT), which were the most abundant haplotypes in Duroc (0.75), Landrace (0.78) and Chinese indigenous breeds (>0.73), respectively. Duroc individuals with the H1H1 diplotype always exhibited the lowest feed conversion ratio (FCR) (P < 0.05), while H2H2 had the thickest backfat thickness (P < 0.05). Landrace individuals with H2H3 had lower backfat thickness (P < 0.05), higher muscle thickness (P < 0.05) and estimated lean meat percentage (P < 0.05) than those with diplotype H2H2 and H3H3. Luciferase assay indicated pGL3-basic-H2 had the highest activity and pGL3-basic-H1 had the lowest activity in driving reporter gene transcription in HEK293 cells in vitro. In H1 haplotype, two GR binding sites and an ERα binding site were predicted to be introduced. While in H2 and H3, there were other transcriptional factor binding sites predicted in H2 and H3, such as Sp1, AP-2 and CAC-binding proteins, which were broadly expressed transcription factors and capable of contributing to basal promoter activity. The reduced basal promoter activity of H1 may be due to the lack of inducement for GR and ERα binding sites in HEK293 cells. The identified functional polymorphisms provide new evidence of PNPLA2 as an important candidate gene for fat deposition and carcass traits in pigs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Zimmermann R, Strauss JG, Haemmerle G, Schoiswohl G, Birner-Gruenberger R, Riederer M, Lass A, Neuberger G, Eisenhaber F, Hermetter A, Zechner R (2004) Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306:1383–1386

    Article  CAS  PubMed  Google Scholar 

  2. Jenkins CM, Mancuso DJ, Yan W, Sims HF, Gibson B, Gross RW (2004) Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities. J Biol Chem 279:48968–48975

    Article  CAS  PubMed  Google Scholar 

  3. Villena JA, Roy S, Sarkadi-Nagy E, Kim KH, Sul HS (2004) Desnutrin, an adipocyte gene encoding a novel patatin domaincontaining protein, is induced by fasting and glucocorticoids: ectopic expression of desnutrin increases triglyceride hydrolysis. J Biol Chem 279:47066–47075

    Article  CAS  PubMed  Google Scholar 

  4. Kershaw EE, Hamm JK, Verhagen LA, Peroni O, Katic M, Flier JS (2006) Adipose triglyceride lipase function, regulation by insulin, and comparison with adiponutrin. Diabetes 55:148–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Smirnova E, Goldberg EB, Makarova KS, Lin L, Brown WJ, Jackson CL (2006) ATGL has a key role in lipid droplet/adiposome degradation in mammalian cells. EMBO Rep 7(1):106–113

    Article  CAS  PubMed  Google Scholar 

  6. Chen JF, Dai LH, Xu NY, Xiong YZ, Jiang SW (2006) Assignment of the patatin-like phospholipase domain containing 2 gene (PNPLA2) to porcine chromosome 2p17 with radiation hybrids. Cytogenet Genome Res 112(3–4):342G

    Article  CAS  PubMed  Google Scholar 

  7. Rattink AP, Faivre M, Jungerius BJ, Groenen MA, Harlizius B (2001) A high-resolution comparative RH map of porcine chromosome (SSC) 2. Mamm Genome 12:366–370

    Article  CAS  PubMed  Google Scholar 

  8. Schoenborn V, Heid IM, Vollmert C, Lingenhel A, Adams TD, Hopkins PN, Illig T, Zimmermann R, Zechner R, Hunt SC, Kronenberg F (2006) The ATGL gene is associated with free fatty acids, triglycerides, and type 2 diabetes. Diabetes 55(5):1270–1275

    Article  CAS  PubMed  Google Scholar 

  9. Fischer J, Negre-Salvayre A, Salvayre R (2007) Neutral lipid storage diseases and ATGL (adipose triglyceride lipase) and CGI-58/ABHD5 (alpha-beta hydrolase domain-containing 5) deficiency: myopathy, ichthyosis, but no obesity. Med Sci (Paris) 23(6–7):575–578

    Article  Google Scholar 

  10. Dai LH, Xiong YZ, Chen JF, Deng CY, Zuo B, Xu DQ, Lei MG, Zheng R, Li FE, Jiang SW (2011) Molecular characterization and association analysis of porcine adipose triglyceride lipase (PNPLA2) gene. Mol Biol Rep 38:921–927

    Article  CAS  PubMed  Google Scholar 

  11. Chorley BN, Wang X, Campbell MR, Pittman GS, Noureddine MA, Bell DA (2008) Discovery and verification of functional single nucleotide polymorphisms in regulatory genomic regions: current and developing technologies. Mutat Res Mutat Res 659(1–2):147–157

    Article  CAS  PubMed  Google Scholar 

  12. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  13. Shi YY, He L (2005) SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res 15:97–98

    Article  CAS  PubMed  Google Scholar 

  14. Tan Q, Christiansen L, Christensen K, Bathum L, Li S, Zhao JH, Kruse TA (2005) Haplotype association analysis of human disease traits using genotype data of unrelated individuals. Genet Res 86(3):223–231

    Article  CAS  PubMed  Google Scholar 

  15. Li J, Zhou Y, Elston RC (2006) Haplotype-based quantitative trait mapping using a clustering algorithm. BMC Bioinform 7:258

    Article  Google Scholar 

  16. Rieder MJ, Taylor SL, Clark AG, Nickerson DA (1999) Sequence variation in the human angiotensin converting enzyme. Nat Genet 22:59–62

    Article  CAS  PubMed  Google Scholar 

  17. Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang YH, Byrne KA, Reverter A, Harper GS, Taniguchi M, McWilliam SM, Mannen H, Oyama K, Lehnert SA (2005) Transcriptional profiling of skeletal muscle tissue from two breeds of cattle. Mamm Genome 16(3):201–210

    Article  CAS  PubMed  Google Scholar 

  19. Wang X, Tomso DJ, Chorley BN, Cho HY, Cheung VG, Kleeberger SR, Bell DA (2007) Identification of polymorphic antioxidant response elements in the human genome. Hum Mol Genet 16(10):1188–1200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Singh M, Singh P, Juneja PK, Singh S, Kaur T (2011) SNP–SNP interactions within APOE gene influence plasma lipids in post menopausal osteoporosis. Rheumatol Int 31:421–423

    Article  PubMed  Google Scholar 

  21. Daly MJ, Rious JD, Schaffner SF, Hudson TJ, Lander ES (2001) High-resolution haplotype structure in the human genome. Nat Genet 29:229–232

    Article  CAS  PubMed  Google Scholar 

  22. Xu C, He JH, Jiang HF, Zu LX, Zhai WJ, Pu SS (2009) Direct effect of glucocorticoids on lipolysis in adipocytes. Mol Endocrinol 23:1161–1170

    Article  CAS  PubMed  Google Scholar 

  23. Oakley RH, Cidlowski JA (2011) Cellular processing of the glucocorticoid receptor gene and protein: new mechanisms for generating tissue-specific actions of glucocorticoids. J Biol Chem 286:3177–3184

    Article  CAS  PubMed  Google Scholar 

  24. Lee MJ, Pramyothin P, Karastergiou K, Fried SK (2014) Deconstructing the roles of glucocorticoids in adipose tissue biology and the development of central obesity. Biochim Biophys Acta 1842(3):473–481

    Article  CAS  PubMed  Google Scholar 

  25. Xiao J, Wang NL, Sun B, Cai GP (2010) Estrogen receptor mediates the effects of pseudoprotodiocsin on adipogenesis in 3T3-L1 cells. Am J Physiol 299(1):C128–C138

    Article  CAS  Google Scholar 

  26. D’Eon TM, Souza SC, Aronovitz M, Obin MS, Fried SK, Greenberg AS (2005) Estrogen regulation of adiposity and fuel partitioning. Evidence of genomic and non-genomic regulation of lipogenic and oxidative pathways. J Biol Chem 80:35983–35991

    Article  Google Scholar 

  27. Metz L, Gerbaix M, Masgrau A, Guillet C, Walrand S, Boisseau N, Boirie Y, Courteix D (2016) Nutritional and exercise interventions variably affect estrogen receptor expression in the adipose tissue of male rats. Nutr Res 36(3):280–289

    Article  CAS  PubMed  Google Scholar 

  28. Wend K, Wend P, Drew BG, Henvener AL, Miranda-Carboni GA, Krum SA (2013) ERα regulates lipid metabolism in bone through ATGL and perilipin. J Cell Biochem 114(6):1306–1314

    Article  CAS  PubMed  Google Scholar 

  29. Solomon SS, Majumdar G, Martinez-Hernandez A, Raghow R (2008) A critical role of Sp1 transcription factor in regulating gene expression in response to insulin and other hormones. Life Sci 83(9–10):305–312

    Article  CAS  PubMed  Google Scholar 

  30. Huang C, Xie K (2012) Crosstalk of Sp1 and Stat3 signaling in pancreatic cancer pathogenesis. Cytokine Growth Factor Rev 23(1–2):25–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhu J, Sun Y, Luo J, Wu M, Li J, Cao Y (2015) Specificity protein 1 regulates gene expression related to fatty acid metabolism in goat mammary epithelial cells. Int J Mol Sci 16(1):1806–1820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhu JJ, Luo J, Xu HF, Wang H, Loor JJ (2016) Short communication: altered expression of specificity protein 1 impairs milk fat synthesis in goat mammary epithelial cells. J Dairy Sci 99(6):4893–4898

    Article  CAS  PubMed  Google Scholar 

  33. Vizcaíno C, Mansilla S, Portugal J (2015) Sp1 transcription factor: a long-standing target in cancer chemotherapy. Pharmacol Ther 152:111–124

    Article  PubMed  Google Scholar 

  34. Eckert D, Buhl S, Weber S, Jäger R, Schorle H (2005) The AP-2 family of transcription factors. Genome Biol 6(13):246

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zeng YX, Somasundaram K, El-Deiry WS (1997) AP2 inhibits cancer cell growth and activates p21WAF1/CIP1 expression. Nat Genet 15:78–82

    Article  CAS  PubMed  Google Scholar 

  36. Hilger-Eversheim K, Moser M, Schorle H, Buettner R (2000) Regulatory roles of AP-2 transcription factors in vertebrate development, apoptosis and cell-cycle control. Gene 260(1–2):1–12

    Article  CAS  PubMed  Google Scholar 

  37. Mignotte V, Wall L, Deboer E, Grosveld F, Romeo PH (1989) Two tissue-specific factors bind the erythroid promoter of the human porphobilinogen deaminase gene. Nucleic Acids Res 17(1):37–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The work was supported by National Natural Science Foundation of China (31201783), National Major Project for Production of Transgenic Breeding Grant (2014ZX0800945B), and National Natural Science Foundation of Zhejiang Province (LY15C170003, Y13C170012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruhai Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, L., Chu, X., Lu, F. et al. Detection of four polymorphisms in 5′ upstream region of PNPLA2 gene and their associations with economic traits in pigs. Mol Biol Rep 43, 1305–1313 (2016). https://doi.org/10.1007/s11033-016-4068-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-016-4068-x

Keywords

Navigation