Skip to main content

Advertisement

Log in

Lower carrier rate of GJB2 W24X ancestral Indian mutation in Roma samples from Hungary: implication for public health intervention

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The purpose of this work was to characterise the W24X mutation of the GJB2 gene in order to provide more representative and geographicaly relevant carrier rates of healthy Roma subisolates and the Hungarian population. 493 Roma and 498 Hungarian healthy subjects were genotyped for the GJB2 c.71G>A (rs104894396, W24X) mutation by PCR–RFLP assay and direct sequencing. This is the first report on GJB2 W24X mutation in geographically subisolated Roma population of Hungary compared to local Hungarians. Comparing the genotype and allele frequencies of GJB2 rs104894396 mutation, significant difference was found in GG (98.4 vs. 99.8 %), GA (1.62 vs. 0.20 %) genotypes and A (0.8 vs. 0.1 %) allele between the Roma and Hungarian populations, respectively (p < 0.02). None of the subjects of Roma and Hungarian samples carried the GJB2 W24X AA genotype. Considerable result of our study, that the proportion of GJB2 W24X GA heterozygotes and the A allele frequency was eight times higher in Roma than in Hungarians. Considering the results, the mutant allele frequency both in Roma (0.8 %) and in Hungarian (0.1 %) populations is lower than expected from previous results, likely reflecting local differentiated subisolates of these populations and a suspected lower risk for GJB2 mutation related deafness. However, the significant difference in GJB2 W24X carrier rates between the Roma and Hungarians may initiate individual diagnostic investigations and effective public health interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kikuchi T, Kimura RS, Paul DL, Takasaka T, Adams JC (2000) Gap junction systems in the mammalian cochlea. Brain Res Brain Res Rev 32(1):163–166

    Article  CAS  PubMed  Google Scholar 

  2. Apps SA, Rankin WA, Kurmis AP (2007) Connexin 26 mutations in autosomal recessive deafness disorders: a review. Int J Audiol 46(2):75–81. doi:10.1080/14992020600582190

    Article  PubMed  Google Scholar 

  3. Zelante L, Gasparini P, Estivill X, Melchionda S, D’Agruma L, Govea N, Mila M, Monica MD, Lutfi J, Shohat M, Mansfield E, Delgrosso K, Rappaport E, Surrey S, Fortina P (1997) Connexin26 mutations associated with the most common form of non-syndromic neurosensory autosomal recessive deafness (DFNB1) in Mediterraneans. Hum Mol Genet 6(9):1605–1609

    Article  CAS  PubMed  Google Scholar 

  4. Rabionet R, Gasparini P, Estivill X (2000) Molecular genetics of hearing impairment due to mutations in gap junction genes encoding beta connexins. Hum Mutat 16(3):190–202. doi:10.1002/1098-1004(200009)16:3<190:AID-HUMU2>3.0.CO;2-I

    Article  CAS  PubMed  Google Scholar 

  5. Padma G, Ramchander PV, Nandur UV, Padma T (2009) GJB2 and GJB6 gene mutations found in Indian probands with congenital hearing impairment. J Genet 88(3):267–272

    Article  CAS  PubMed  Google Scholar 

  6. Lee JR, White TW (2009) Connexin-26 mutations in deafness and skin disease. Expert Rev Mol Med 11:e35. doi:10.1017/S1462399409001276

    Article  PubMed  Google Scholar 

  7. Duman D, Tekin M (2012) Autosomal recessive nonsyndromic deafness genes: a review. Front Biosci 17:2213–2236

    Article  Google Scholar 

  8. Kelsell DP, Dunlop J, Stevens HP, Lench NJ, Liang JN, Parry G, Mueller RF, Leigh IM (1997) Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature 387(6628):80–83. doi:10.1038/387080a0

    Article  CAS  PubMed  Google Scholar 

  9. Estivill X, Fortina P, Surrey S, Rabionet R, Melchionda S, D′Agruma L, Mansfield E, Rappaport E, Govea N, Mila M, Zelante L, Gasparini P (1998) Connexin-26 mutations in sporadic and inherited sensorineural deafness. Lancet 351(9100):394–398. doi:10.1016/S0140-6736(97)11124-2

    Article  CAS  PubMed  Google Scholar 

  10. Maheshwari M, Vijaya R, Ghosh M, Shastri S, Kabra M, Menon PS (2003) Screening of families with autosomal recessive non-syndromic hearing impairment (ARNSHI) for mutations in GJB2 gene: Indian scenario. Am J Med Genet A 120A(2):180–184. doi:10.1002/ajmg.a.20014

    Article  PubMed  Google Scholar 

  11. Joseph AY, Rasool TJ (2009) High frequency of connexin26 (GJB2) mutations associated with nonsyndromic hearing loss in the population of Kerala. India Int J Pediatr Otorhinolaryngol 73(3):437–443. doi:10.1016/j.ijporl.2008.11.010

    Article  PubMed  Google Scholar 

  12. Bouwer S, Angelicheva D, Chandler D, Seeman P, Tournev I, Kalaydjieva L (2007) Carrier rates of the ancestral Indian W24X mutation in GJB2 in the general Gypsy population and individual subisolates. Genet Test 11(4):455–458. doi:10.1089/gte.2007.0048

    Article  CAS  PubMed  Google Scholar 

  13. Bors A, Andrikovics H, Kalmar L, Erdei N, Galambos S, Losonczi A, Furedi S, Balogh I, Szalai C, Tordai A (2004) Frequencies of two common mutations (c.35delG and c.167delT) of the connexin 26 gene in different populations of Hungary. Int J Mol Med 14(6):1105–1108

    CAS  PubMed  Google Scholar 

  14. Minarik G, Ferak V, Ferakova E, Ficek A, Polakova H, Kadasi L (2003) High frequency of GJB2 mutation W24X among Slovak Romany (Gypsy) patients with non-syndromic hearing loss (NSHL). Gen Physiol Biophys 22(4):549–556

    CAS  PubMed  Google Scholar 

  15. Sipeky C, Csongei V, Jaromi L, Safrany E, Maasz A, Takacs I, Beres J, Fodor L, Szabo M, Melegh B (2011) Genetic variability and haplotype profile of MDR1 (ABCB1) in Roma and Hungarian population samples with a review of the literature. Drug Metab Pharmacokinet 26(2):206–215

    Article  CAS  PubMed  Google Scholar 

  16. Sipeky C, Csongei V, Jaromi L, Safrany E, Polgar N, Lakner L, Szabo M, Takacs I, Melegh B (2009) Vitamin K epoxide reductase complex 1 (VKORC1) haplotypes in healthy Hungarian and Roma population samples. Pharmacogenomics 10(6):1025–1032. doi:10.2217/pgs.09.46

    Article  CAS  PubMed  Google Scholar 

  17. Sipeky C, Lakner L, Szabo M, Takacs I, Tamasi V, Polgar N, Falus A, Melegh B (2009) Interethnic differences of CYP2C9 alleles in healthy Hungarian and Roma population samples: relationship to worldwide allelic frequencies. Blood Cells Mol Dis 43(3):239–242. doi:10.1016/j.bcmd.2009.05.005

    Article  CAS  PubMed  Google Scholar 

  18. Mukherjea D, Rybak LP (2011) Pharmacogenomics of cisplatin-induced ototoxicity. Pharmacogenomics 12(7):1039–1050. doi:10.2217/pgs.11.48

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Knoll C, Smith RJ, Shores C, Blatt J (2006) Hearing genes and cisplatin deafness: a pilot study. Laryngoscope 116(1):72–74. doi:10.1097/01.mlg.0000185596.20207.d2

    Article  CAS  PubMed  Google Scholar 

  20. Snoeckx RL, Huygen PL, Feldmann D, Marlin S, Denoyelle F, Waligora J, Mueller-Malesinska M, Pollak A, Ploski R, Murgia A, Orzan E, Castorina P, Ambrosetti U, Nowakowska-Szyrwinska E, Bal J, Wiszniewski W, Janecke AR, Nekahm-Heis D, Seeman P, Bendova O, Kenna MA, Frangulov A, Rehm HL, Tekin M, Incesulu A, Dahl HH, du Sart D, Jenkins L, Lucas D, Bitner-Glindzicz M, Avraham KB, Brownstein Z, del Castillo I, Moreno F, Blin N, Pfister M, Sziklai I, Toth T, Kelley PM, Cohn ES, Van Maldergem L, Hilbert P, Roux AF, Mondain M, Hoefsloot LH, Cremers CW, Lopponen T, Lopponen H, Parving A, Gronskov K, Schrijver I, Roberson J, Gualandi F, Martini A, Lina-Granade G, Pallares-Ruiz N, Correia C, Fialho G, Cryns K, Hilgert N, Van de Heyning P, Nishimura CJ, Smith RJ, Van Camp G (2005) GJB2 mutations and degree of hearing loss: a multicenter study. Am J Hum Genet 77(6):945–957. doi:10.1086/497996

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Nance WE (2003) The genetics of deafness. Ment Retard Dev Disabil Res Rev 9(2):109–119. doi:10.1002/mrdd.10067

    Article  PubMed  Google Scholar 

  22. Morell RJ, Kim HJ, Hood LJ, Goforth L, Friderici K, Fisher R, Van Camp G, Berlin CI, Oddoux C, Ostrer H, Keats B, Friedman TB (1998) Mutations in the connexin 26 gene (GJB2) among Ashkenazi Jews with nonsyndromic recessive deafness. N Engl J Med 339(21):1500–1505. doi:10.1056/NEJM199811193392103

    Article  CAS  PubMed  Google Scholar 

  23. Lerer I, Sagi M, Malamud E, Levi H, Raas-Rothschild A, Abeliovich D (2000) Contribution of connexin 26 mutations to nonsyndromic deafness in Ashkenazi patients and the variable phenotypic effect of the mutation 167delT. Am J Med Genet 95(1):53–56

    Article  CAS  PubMed  Google Scholar 

  24. Sobe T, Vreugde S, Shahin H, Berlin M, Davis N, Kanaan M, Yaron Y, Orr-Urtreger A, Frydman M, Shohat M, Avraham KB (2000) The prevalence and expression of inherited connexin 26 mutations associated with nonsyndromic hearing loss in the Israeli population. Hum Genet 106(1):50–57

    Article  CAS  PubMed  Google Scholar 

  25. Sobe T, Erlich P, Berry A, Korostichevsky M, Vreugde S, Avraham KB, Bonne-Tamir B, Shohat M (1999) High frequency of the deafness-associated 167delT mutation in the connexin 26 (GJB2) gene in Israeli Ashkenazim. Am J Med Genet 86(5):499–500

    Article  CAS  PubMed  Google Scholar 

  26. Brobby GW, Muller-Myhsok B, Horstmann RD (1998) Connexin 26 R143W mutation associated with recessive nonsyndromic sensorineural deafness in Africa. N Engl J Med 338(8):548–550. doi:10.1056/NEJM199802193380813

    Article  CAS  PubMed  Google Scholar 

  27. Hamelmann C, Amedofu GK, Albrecht K, Muntau B, Gelhaus A, Brobby GW, Horstmann RD (2001) Pattern of connexin 26 (GJB2) mutations causing sensorineural hearing impairment in Ghana. Hum Mutat 18(1):84–85. doi:10.1002/humu.1156

    Article  CAS  PubMed  Google Scholar 

  28. Wang YC, Kung CY, Su MC, Su CC, Hsu HM, Tsai CC, Lin CC, Li SY (2002) Mutations of Cx26 gene (GJB2) for prelingual deafness in Taiwan. Eur J Hum Genet 10(8):495–498. doi:10.1038/sj.ejhg.5200838

    Article  PubMed  Google Scholar 

  29. Hwa HL, Ko TM, Hsu CJ, Huang CH, Chiang YL, Oong JL, Chen CC, Hsu CK (2003) Mutation spectrum of the connexin 26 (GJB2) gene in Taiwanese patients with prelingual deafness. Genet Med 5(3):161–165. doi:10.1097/01.GIM.0000066796.11916.94

    Article  CAS  PubMed  Google Scholar 

  30. Liu XZ, Xia XJ, Ke XM, Ouyang XM, Du LL, Liu YH, Angeli S, Telischi FF, Nance WE, Balkany T, Xu LR (2002) The prevalence of connexin 26 (GJB2) mutations in the Chinese population. Hum Genet 111(4–5):394–397. doi:10.1007/s00439-002-0811-6

    Article  CAS  PubMed  Google Scholar 

  31. Abe S, Usami S, Shinkawa H, Kelley PM, Kimberling WJ (2000) Prevalent connexin 26 gene (GJB2) mutations in Japanese. J Med Genet 37(1):41–43

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Kudo T, Ikeda K, Kure S, Matsubara Y, Oshima T, Watanabe K, Kawase T, Narisawa K, Takasaka T (2000) Novel mutations in the connexin 26 gene (GJB2) responsible for childhood deafness in the Japanese population. Am J Med Genet 90(2):141–145

    Article  CAS  PubMed  Google Scholar 

  33. Ohtsuka A, Yuge I, Kimura S, Namba A, Abe S, Van Laer L, Van Camp G, Usami S (2003) GJB2 deafness gene shows a specific spectrum of mutations in Japan, including a frequent founder mutation. Hum Genet 112(4):329–333. doi:10.1007/s00439-002-0889-x

    CAS  PubMed  Google Scholar 

  34. Roux AF, Pallares-Ruiz N, Vielle A, Faugere V, Templin C, Leprevost D, Artieres F, Lina G, Molinari N, Blanchet P, Mondain M, Claustres M (2004) Molecular epidemiology of DFNB1 deafness in France. BMC Med Genet 5:5. doi:10.1186/1471-2350-5-5

    Article  PubMed Central  PubMed  Google Scholar 

  35. RamShankar M, Girirajan S, Dagan O, Ravi Shankar HM, Jalvi R, Rangasayee R, Avraham KB, Anand A (2003) Contribution of connexin26 (GJB2) mutations and founder effect to non-syndromic hearing loss in India. J Med Genet 40(5):e68

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Pampanos A, Economides J, Iliadou V, Neou P, Leotsakos P, Voyiatzis N, Eleftheriades N, Tsakanikos M, Antoniadi T, Hatzaki A, Konstantopoulou I, Yannoukakos D, Gronskov K, Brondum-Nielsen K, Grigoriadou M, Gyftodimou J, Iliades T, Skevas A, Petersen MB (2002) Prevalence of GJB2 mutations in prelingual deafness in the Greek population. Int J Pediatr Otorhinolaryngol 65(2):101–108

    Article  PubMed  Google Scholar 

  37. Bhalla S, Sharma R, Khandelwal G, Panda NK, Khullar M (2009) Low incidence of GJB2, GJB6 and mitochondrial DNA mutations in North Indian patients with non-syndromic hearing impairment. Biochem Biophys Res Commun 385(3):445–448. doi:10.1016/j.bbrc.2009.05.083

    Article  CAS  PubMed  Google Scholar 

  38. Cordeiro-Silva Mde F, Barbosa A, Santiago M, Provetti M, Dettogni RS, Tovar TT, Rabbi-Bortolini E, Louro ID (2011) Mutation analysis of GJB2 and GJB6 genes in Southeastern Brazilians with hereditary nonsyndromic deafness. Mol Biol Rep 38(2):1309–1313. doi:10.1007/s11033-010-0231-y

    Article  PubMed  Google Scholar 

  39. Mani RS, Ganapathy A, Jalvi R, Srikumari Srisailapathy CR, Malhotra V, Chadha S, Agarwal A, Ramesh A, Rangasayee RR, Anand A (2009) Functional consequences of novel connexin 26 mutations associated with hereditary hearing loss. Eur J Hum Genet 17(4):502–509. doi:10.1038/ejhg.2008.179

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Bajaj Y, Sirimanna T, Albert DM, Qadir P, Jenkins L, Bitner-Glindzicz M (2008) Spectrum of GJB2 mutations causing deafness in the British Bangladeshi population. Clin Otolaryngol 33(4):313–318. doi:10.1111/j.1749-4486.2008.01754.x

    Article  CAS  PubMed  Google Scholar 

  41. Alvarez A, del Castillo I, Villamar M, Aguirre LA, Gonzalez-Neira A, Lopez-Nevot A, Moreno-Pelayo MA, Moreno F (2005) High prevalence of the W24X mutation in the gene encoding connexin-26 (GJB2) in Spanish Romani (gypsies) with autosomal recessive non-syndromic hearing loss. Am J Med Genet A 137A(3):255–258. doi:10.1002/ajmg.a.30884

    Article  PubMed  Google Scholar 

  42. Toth T, Kupka S, Haack B, Riemann K, Braun S, Fazakas F, Zenner HP, Muszbek L, Blin N, Pfister M, Sziklai I (2004) GJB2 mutations in patients with non-syndromic hearing loss from Northeastern Hungary. Hum Mutat 23(6):631–632. doi:10.1002/humu.9250

    Article  PubMed  Google Scholar 

  43. Kalay E, Caylan R, Kremer H, de Brouwer AP, Karaguzel A (2005) GJB2 mutations in Turkish patients with ARNSHL: prevalence and two novel mutations. Hear Res 203(1–2):88–93. doi:10.1016/j.heares.2004.11.022

    Article  CAS  PubMed  Google Scholar 

  44. Uyguner O, Emiroglu M, Uzumcu A, Hafiz G, Ghanbari A, Baserer N, Yuksel-Apak M, Wollnik B (2003) Frequencies of gap- and tight-junction mutations in Turkish families with autosomal-recessive non-syndromic hearing loss. Clin Genet 64(1):65–69

    Article  CAS  PubMed  Google Scholar 

  45. Kudo T, Ikeda K, Oshima T, Kure S, Tammasaeng M, Prasansuk S, Matsubara Y (2001) GJB2 (connexin 26) mutations and childhood deafness in Thailand. Otol Neurotol 22(6):858–861

    Article  CAS  PubMed  Google Scholar 

  46. Najmabadi H, Cucci RA, Sahebjam S, Kouchakian N, Farhadi M, Kahrizi K, Arzhangi S, Daneshmandan N, Javan K, Smith RJ (2002) GJB2 mutations in Iranians with autosomal recessive non-syndromic sensorineural hearing loss. Hum Mutat 19(5):572. doi:10.1002/humu.9033

    Article  PubMed  Google Scholar 

  47. Lazar C, Popp R, Trifa A, Mocanu C, Mihut G, Al-Khzouz C, Tomescu E, Figan I, Grigorescu-Sido P (2010) Prevalence of the c.35delG and p. W24X mutations in the GJB2 gene in patients with nonsyndromic hearing loss from North-West Romania. Int J Pediatr Otorhinolaryngol 74(4):351–355. doi:10.1016/j.ijporl.2009.12.015

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Hungarian National Science Foundation Grant (OTKA K 103983), the SROP-4.2.2/08/1/2008-0011 Science, Please! Research Team on Innovation, the SROP-4.2.1.B-10/2/KONV-2010-0002, Developing the South Transdanubian Regional University Competitiveness and the János Szentágothai Research Centre (Ifjusag str. 20, 7624-Pecs).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Csilla Sipeky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sipeky, C., Matyas, P., Melegh, M. et al. Lower carrier rate of GJB2 W24X ancestral Indian mutation in Roma samples from Hungary: implication for public health intervention. Mol Biol Rep 41, 6105–6110 (2014). https://doi.org/10.1007/s11033-014-3488-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3488-8

Keywords

Navigation