Skip to main content

Advertisement

Log in

Increased bioethanol production from commercial tobacco cultivars overexpressing thioredoxin f grown under field conditions

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Bioethanol is mainly produced from food crops such as sugar cane and maize, and this has been held partly responsible for the rise of food commodity prices. Tobacco, integrated in biorefinery facilities for the extraction of different compounds, could become an alternative feedstock for biofuel production. When grown for energy production, using high plant densities and several mowings during the growing season, tobacco can produce large amounts of inexpensive green biomass. We have bred two commercial tobacco cultivars (Virginia Gold and Havana 503B) to increase the carbohydrate content by the overexpression of thioredoxin f in the chloroplast. Marker-free transplastomic plants were recovered and their agronomic performance under field conditions was evaluated. These plants were phenotypically equivalent to their wild types yet showed increased starch (up to 280 %) and soluble sugar (up to 74 %) contents in leaves relative to their control plants. Fermentable sugars released from the stalk were also higher (up to 24 %) for transplastomic plants. After heat pretreatment, enzymatic hydrolysis and yeast fermentation of leaf and stalk hydrolysates, an average of 20–40 % more ethanol was obtained from transplastomic plants than their wild-type controls. We propose an integral exploitation of the entire tobacco plant managed as a forage crop (harvesting sugar and starch-rich leaves and lignocellulosic stalks) that could considerably cheapen the entire production process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agrawal P, Verma D, Daniell H (2011) Expression of Trichoderma reesei β-mannanase in tobacco chloroplasts and its utilization in lignocellulosic woody biomass hydrolysis. PLoS ONE 6:e29302

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Akpinar O, Erdogan K, Bakir U, Yilmaz L (2010) Comparison of acid and enzymatic hydrolysis of tobacco stalk xylan for preparation of xylooligosaccharides. LWT Food Sci Technol 43:119–125

    Article  CAS  Google Scholar 

  • Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861

    Article  CAS  PubMed  Google Scholar 

  • Andrianov V, Borisjuk N, Pogrebnyak N et al (2010) Tobacco as a production platform for biofuel: overexpression of Arabidopsis DGAT and LEC2 genes increases accumulation and shifts the composition of lipids in green biomass. Plant Biotechnol J 8:277–287

    Article  CAS  PubMed  Google Scholar 

  • Brunecky R, Selig MJ, Vinzant TB et al (2011) In planta expression of A. cellulolyticus Cel5A endocellulase reduces cell wall recalcitrance in tobacco and maize. Biotechnol Biofuels 4:1

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Corneille S, Lutz K, Svab Z, Maliga P (2001) Efficient elimination of selectable marker genes from the plastid genome by the CRE-lox site-specific recombination system. Plant J 27:171–178

    Article  CAS  PubMed  Google Scholar 

  • Daniell H (1997) Transformation and foreign gene expression in plants by microprojectile bombardment. Methods Mol Biol 62:463–489

    CAS  PubMed  Google Scholar 

  • Du X, McPhail LL (2012) Inside the black box: the price linkage and transmission between energy and agricultural markets. Energy J 33:171–194

    Article  Google Scholar 

  • Erdei B, Barta Z, Sipos B et al (2010) Ethanol production from mixtures of wheat straw and wheat meal. Biotechnol Biofuels 3:16

    Article  PubMed Central  PubMed  Google Scholar 

  • Farran I, Río-Manterola F, Iñiguez M et al (2008) High-density seedling expression system for the production of bioactive human cardiotrophin-1, a potential therapeutic cytokine, in transgenic tobacco chloroplasts. Plant Biotechnol J 6:516–527

    Article  CAS  PubMed  Google Scholar 

  • Food and Agricultural Organization (2003) Projections of tobacco production, consumption and trade to the year 2010. In: ftp://ftp.fao.org/docrep/fao/006/y4956e/y4956e00.pdf. Accessed 14 March 2013

  • Food and Agricultural Organization (2011) Price volatility in food and agricultural markets: policy responses

  • Glaring MA, Skryhan K, Kötting O et al (2012) Comprehensive survey of redox sensitive starch metabolising enzymes in Arabidopsis thaliana. Plant Physiol Biochem 58:89–97

    Article  CAS  PubMed  Google Scholar 

  • Gray BN, Ahner BA, Hanson MR (2009) High-level bacterial cellulase accumulation in chloroplast-transformed tobacco mediated by downstream box fusions. Biotechnol Bioeng 102:1045–1054

    Article  CAS  PubMed  Google Scholar 

  • Gray BN, Yang H, Ahner BA, Hanson MR (2011) An efficient downstream box fusion allows high-level accumulation of active bacterial beta-glucosidase in tobacco chloroplasts. Plant Mol Biol 76:345–355

    Article  CAS  PubMed  Google Scholar 

  • Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund MF et al (2006) Bio-ethanol—the fuel of tomorrow from the residues of today. Trends Biotechnol 24:549–556

    Article  PubMed  Google Scholar 

  • Harris D, DeBolt S (2010) Synthesis, regulation and utilization of lignocellulosic biomass. Plant Biotechnol J 8:244–262

    Article  CAS  PubMed  Google Scholar 

  • Hu G, Heitmann JA, Rojas OJ (2008) Feedstock pretreatment strategies for producing ethanol from wood, bark, and forest residues. BioResources 3:270–294

    Google Scholar 

  • Kolbe A, Oliver SN, Fernie AR et al (2006) Combined transcript and metabolite profiling of Arabidopsis leaves reveals fundamental effects of the thiol-disulfide status on plant metabolism. Plant Physiol 141:412–422

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kolotilin I, Kaldis A, Pereira EO et al (2013) Optimization of transplastomic production of hemicellulases in tobacco: effects of expression cassette configuration and tobacco cultivar used as production platform on recombinant protein yields. Biotechnol Biofuels 6:65

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kötting O, Kossmann J, Zeeman SC, Lloyd JR (2010) Regulation of starch metabolism: the age of enlightenment? Curr Opin Plant Biol 13:321–329

    Article  PubMed  Google Scholar 

  • Kretschmer B, Bowyer C, Buckwell A (2012) EU Biofuel use and agricultural commodity prices: a review of the evidence base. Institute for European Environmental Policy (IEEP), London

  • Kurek I, Kawagoe Y, Jacob-Wilk D et al (2002) Dimerization of cotton fiber cellulose synthase catalytic subunits occurs via oxidation of the zinc-binding domains. Proc Natl Acad Sci USA 99:11109–11114

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Larsson S, Palmqvist E, Hahn-Hägerdal B et al (1999) The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microbial Technol 24:151–159

    Article  CAS  Google Scholar 

  • Long RC (1984) Edible tobacco protein. Crops Soil Mag 36:13–15

    Google Scholar 

  • Martin C, Fernandez T, Garcia R et al (2002) Preparation of hydrolysates from tobacco stalks and ethanolic fermentation by Saccharomyces cerevisiae. World J Microbiol Biotechnol 18:857–862

    Article  CAS  Google Scholar 

  • Martin C, Fernandez T, Garcia A et al (2008) Wet oxidation pretreatment of tobacco stalks and orange waste for bioethanol production. Preliminary results. Cellul Chem Technol 42:429–434

    CAS  Google Scholar 

  • Molina A, Hervás-Stubbs S, Daniell H et al (2004) High-yield expression of a viral peptide animal vaccine in transgenic tobacco chloroplasts. Plant Biotechnol J 2:141–153

    Article  CAS  PubMed  Google Scholar 

  • OECD (2008) Biofuel support policies: an economic assessment. 14:409–412

  • Palmqvist E, Grage H, Meinander NQ, Hahn-Hägerdal B (1999) Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts. Biotechnol Bioeng 63:46–55

    Article  CAS  PubMed  Google Scholar 

  • Petersen K, Bock R (2011) High-level expression of a suite of thermostable cell wall-degrading enzymes from the chloroplast genome. Plant Mol Biol 76:311–321

    Article  CAS  PubMed  Google Scholar 

  • Pienkos PT, Zhang M (2009) Role of pretreatment and conditioning processes on toxicity of lignocellulosic biomass hydrolysates. Cellulose 16:743–762

    Article  CAS  Google Scholar 

  • Rutz D, Janssen R (2007) Biofuel technolgy handbook. WIP Renewable Energies

  • Saha BC, Cotta MA (2006) Ethanol production from alkaline peroxide pretreated enzymatically saccharified wheat straw. Biotechnol Progr 22:449–453

    Article  CAS  Google Scholar 

  • Saha BC, Cotta MA (2010) Comparison of pretreatment strategies for enzymatic saccharification and fermentation of barley straw to ethanol. New Biotechnol 27:10–16

    Article  CAS  Google Scholar 

  • Sánchez OJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99:5270–5295

    Article  PubMed  Google Scholar 

  • Sanz-Barrio R, Fernández-San Millán A, Carballeda J et al (2012) Chaperone-like properties of tobacco plastid thioredoxins f and m. J Exp Bot 63:365–379

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sanz-Barrio R, Corral-Martínez P, Ancin M et al (2013) Overexpression of plastidial thioredoxin f leads to enhanced starch accumulation in tobacco leaves. Plant Biotechnol J 11:618–627

    Article  CAS  PubMed  Google Scholar 

  • Sarkar N, Ghosh SK, Bannerjee S, Aikat K (2012) Bioethanol production from agricultural wastes: an overview. Renew Energy 37:19–27

    Article  CAS  Google Scholar 

  • Uncu ON, Cekmecelioglu D (2011) Cost-effective approach to ethanol production and optimization by response surface methodology. Waste Manage 31:636–643

    Article  CAS  Google Scholar 

  • van Beilen J, Möller R, Toonen M et al (2007) Industrial crop platforms for the production of chemicals and biopolymers. CPL Press, Berks

    Google Scholar 

  • Vanholme R, Morreel K, Ralph J, Boerjan W (2008) Lignin engineering. Curr Opin Plant Biol 11:278–285

    Article  CAS  PubMed  Google Scholar 

  • Verma D, Kanagaraj A, Jin S et al (2010) Chloroplast-derived enzyme cocktails hydrolyse lignocellulosic biomass and release fermentable sugars. Plant Biotechnol J 8:332–350

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wildman SG (1979) Tobacco, a potential food crop. Crops Soil Mag 31:7–9

    Google Scholar 

  • Yang F, Mitra P, Zhang L et al (2013) Engineering secondary cell wall deposition in plants. Plant Biotechnol J 11:325–335

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu JY, Pan XJ (2010) Woody biomass pretreatment for cellulosic ethanol production: technology and energy consumption evaluation. Bioresour Technol 101:4992–5002

    Article  CAS  PubMed  Google Scholar 

  • Ziegelhoffer T, Raasch JA, Austin-Phillips S (2009) Expression of Acidothermus cellulolyticus E1 endo-beta-1,4-glucanase catalytic domain in transplastomic tobacco. Plant Biotechnol J 7:527–536

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Irantzu Alegría and co-workers of the Biomass Energy Department (Renewable Energy National Centre, Spain) for technical assistance with regard to biomass processing and for the critical reading of the manuscript; Lorea Villanueva for the collaboration undertaken with plant transformations; and Jaime Zabaleta (INTIA, Spain), Esther Molinero and Amaia Altuna for field experiment collaborations. This work was supported by Grant AGL2010-15107 from the Ministerio de Ciencia e Innovación (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inmaculada Farran.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farran, I., Fernandez-San Millan, A., Ancin, M. et al. Increased bioethanol production from commercial tobacco cultivars overexpressing thioredoxin f grown under field conditions. Mol Breeding 34, 457–469 (2014). https://doi.org/10.1007/s11032-014-0047-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-014-0047-x

Keywords

Navigation