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Abstract A numerical study of an application of

magnetorheological (MR) damper for semi-active

control is presented in this paper. The damper is

mounted in the suspension of a Duffing oscillator with

an attached pendulum. The MR damper with properties

modelled by a hysteretic loop, is applied in order to

control of the system response. Two methods for the

dynamics control in the closed-loop algorithm based

on the amplitude and velocity of the pendulum and the

impulse on–off activation of MR damper are proposed.

These concepts allow the system maintaining on a

desirable attractor or, if necessary, to change a position

from one attractor to another. Additionally, the detailed

bifurcation analysis of the influence of MR damping on

the number of periodic solutions and their stability is

shown by continuation method. The influence of MR

damping on the chaotic behavior is studied, as well.

Keywords MR damping � Hysteresis � Chaos �
Control � Absorption effect

1 Introduction

Pendulum-like systems are commonly used in many

practical applications, including special dynamical

dampers or energy harvesters [1]. Dynamics of such

systems can exhibit extremely complex behaviour.

Especially, if the system is nonlinear and includes the

inertial coupling, among strange attractors, multiple

regular attractors may co-exist for some values of

system parameters [2]. The presence of the coupling

terms can lead to a certain type of instability which is

referred to as autoparametric resonance. This kind of

phenomenon takes place when the external resonance

and the internal resonance meet themselves, due to the

coupling terms. The multiple solutions, evolution of

the solution due to variations in parameters or initial

conditions play a very important role in system

dynamics. The small perturbation of initial conditions

or systems parameters may transit the response to

dangerous motion, like a full rotation of the pendulum

or chaotic motion [3]. This problem is essential if the

pendulum plays role of a dynamical vibration absorber

or the energy harvesting device [4]. An autoparametric

system has been intensively analysed for three last

decades. The different responses in the autoparametric

pendulum vibration absorber for a linear mass-spring

damper system have been studied by the harmonic

balance method in Hatwal et al. [5]. A nonlinear

frequency analysis using the multiple scales method

has been presented in Cartmell et al. [6, 7]. The two

mode autoparametric interaction and robustness,
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against variations on the excitation frequency, are

improved on the overall system by direct application of

an on–off servomechanism, controlling the effective

pendulum length and validating also the theoretical

results in an experimental setup. A similar pendulum

dynamic vibration absorber, with time delay in the

internal feedback force, is used to illustrate the real-

time application of a dynamic substructuring technique

in Kyrichko et al. [8] and in paper [9].

In this paper authors propose application of the MR

damper, installed between the oscillator and the

ground to provide controllable damping for the

system. The model of a damper takes into account

the hysteretic effect. The closed-loop control algo-

rithms offer possibility to move the system between

selected stable solutions. Moreover, we show, that MR

damping practically does not reduce the vibration

suppression effect and MR damping can cause a shift

of chaotic regions.

2 An autoparametric pendulum system

2.1 Model of magnetorheological damper (MRD)

The magnetorheological devices provide modern and

elegant solutions for semi-active control in a variety of

applications, offering several advantages: simplicity of

a structure, small number of mobile components,

noise-free fast operation and low power demands. The

MRD is a nonlinear component with dissipative

capability used in the control of semi-active suspen-

sions, where the damping coefficient varies according

to the applied electric current. MR damper is usually

characterized by the displacement and/or velocity of

the piston, the electric current applied to the coil as

inputs and the force generated on the piston as output.

The relationship between damping force and velocity

shows hysteresis loops whose shapes vary according to

the applied current. Hysteresis in dampers is due to the

difference between the accelerating and decelerating

paths of the force-velocity curve [10], thus imposing a

delay in the changes of internal pressures and ulti-

mately forces. Therefore, we propose the nonlinear

MR damping force (FMR) approximated by a hyper-

bolic tangential function of the velocity and the

displacement of the oscillator based on the papers

[11, 12]. In terms of mathematical expressions, the

model makes use of a hyperbolic tangent function to

represent the hysteresis and linear function to represent

the viscous behaviour

FMR ¼ a1
_X þ a3 tanh ðe1

_X þ e2XÞ ð1Þ

where a1 means viscous damping parameter, i.e. the

slope of linear part of Eq. 1, a3 indicates dry friction,

i.e. height of hysteretic loop, e1 describe the slope

shape of dry friction and e2 denotes the width of a

hysteretic loop. The influence of parameters of Eq. 1

on the hysteretic loop shape and comparison with the

classical viscous damping (a3 = 0) and with the

model without hysteresis (e2 = 0) are presented in

Fig. 1.

Based on experimental and numerical studies, the

relationship between e1/e2 approximately equals 10. If

the parameter e2 equals zero then we have the MR

damper without the hysteretic effect. This model was

studied in paper [4]. If the parameter a3 equals zero,

then we obtained classical viscous damping model

widely used in the literature.

2.2 Model of an autoparametric pendulum system

(APS)

Autoparametric vibration systems have an interesting

dynamics that results from at least two nonlinear

subsystems coupled to interact in a way where one of

them transfers the exogenous perturbation energy to

the other. This type of structures as vibration absorber

dampers are applied in technique [13]. The scheme of

an autoparametric vibration absorber system is shown

in Fig. 2. A pendulum vibration absorber is attached to

the damped oscillator. The oscillator suspension is

considered as a classical linear suspension with

viscous damping or nonlinear suspension with a

nonlinear spring (Duffing characteristic) and a mag-

netorheological damper.

The equations of motion for the two degrees-of-

freedom APS are described by dimensionless form [4]:

€XþFMRð _X;XÞþFSðXÞþlkð €usinuþ _u2 cosuÞ
¼ qcosð#sÞ ð2Þ

€uþ a2 _uþ kð €X þ 1Þ sin u ¼ 0 ð3Þ

where Fs denotes function of stiffness oscillator spring

FSðXÞ ¼ X þ cX3 ð4Þ

where c is a dimensionless stiffness coefficient. The

motion of the APS is described by two generalized
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coordinates namely the displacement of the oscilla-

tor in the vertical direction X, and the angle of the

pendulum rotation u: The parameters l and k in

Eqs. 2 and 3 describe the parameters of the pendulum

(the length and mass of the pendulum as a function

natural frequency and static displacement of the linear

oscillator [14]). The parameter a2 denotes the dimen-

sionless damping in the pendulum pivot, assumed to

be constant. The frequency and amplitude of harmonic

excitation are denoted as # and q, respectively.

3 Regular motion under MR damping influence

3.1 Influence MR damping on main parametric

resonance and stability

Active and semi-active control provides an important

new tool for a control engineer. The MR damper

behaviour can be modified from viscous effects, if the

system is not activated, to a mixed mode system with

viscous and dry friction components, when the damper

is activated. Variable MR force (FMR) gives possibility

to on-line control and improve dynamics of an

autoparametric system (Fig. 2). However, to get the

desired response, it is necessary to know influence the

MR damping when the system operates in regular or

chaotic zones. First, let us analyse the influence of

magnetorheological damping on stability of resonance

curves. Our calculations have been performed using

software for numerical continuation Auto07p [15].

Similar software for system with the pendulum has

been used in [16, 17]. The simulation data were taken

from [4]: a1 = 0.1, a2 = 0.02, l = 6, k = 0.3,

q = 0.2, c = 0 and e1 = 10, e2 = 1. Initial condi-

tions are fixed as: Xð0Þ ¼ 0; _Xð0Þ ¼ 0;uð0Þ ¼ 0:1 and

_uð0Þ ¼ 0:

The resonance curves for the oscillator and the

pendulum for a system with classical viscous damping

is presented in Fig. 3. The case of response with a

fixed, not oscillating pendulum is marked by the black

line. This type of solution is called semi-trivial

solution (ST). While the red line corresponds to the

case where the pendulum swings [called non-trivial

solution (NT)]. When the pendulum and the oscillator
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Fig. 2 Scheme of the autoparametric pendulum vibration

absorber
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are in a rest (equilibrium position), the case is called

trivial solution (T). The unstable solutions are marked

by dash-dotted line, while the solid line denotes stable

solutions. Close to # & 1.05, the dynamical elimina-

tion of oscillator’s vibration caused by the pendulum

swinging is clearly visible.

The continuation reveals that for small range of

parameters, two stable non-trivial solutions exist. The

situation takes place for frequency of excitation

# = 0.9 (Fig. 3b). This case will be studied and

explained in the next part of the paper. These solutions

represent pendulum swings, with shifted centre of

vibration (positive or negative). Therefore, in Fig. 3a

only one NT solution is observed. The oscillator

vibrates with the same amplitudes, either for positive or

negative shift of the pendulum. This result will be used

in the next paragraph to control and jump from one

solution to another with a help of the MR damper. [b]

Introducing MR damping, we reduced the ampli-

tude of the oscillator (Figs. 4a, 5a) and the pendulum

(Figs. 4b, 5b), but the absorption effect still exists

(even, for the large values of parameters a3 = 0.1,

Fig. 5a). This is a very important effect from a

practical point of view, because this parameter can be

(a) (b)

Fig. 3 Frequency response for the oscillator (a) and the pendulum (b), for a3 = 0, obtained by continuation method

(a) (b)

Fig. 4 Frequency response for the oscillator (a) and the pendulum (b), for a3 = 0.05, obtained by the continuation method

1890 Meccanica (2014) 49:1887–1900

123



used to control dynamics of the vibration absorber

without decrease its efficiency. Moreover, the damp-

ing analysis shows, that the increase of MR damping,

decreases the resonance region in a small extent.

The influence of MR damping on the amplitude of

the oscillator and the pendulum is shown in Fig. 6. The

bifurcation diagrams are made by one parameter

continuation method for fixed frequency of excitation,

near the dynamic absorption effect (# = 1). The

critical value of MR damping for the pendulum

swinging is equal to acr = a3 = 0.13 (Fig. 6b).

Interestingly, that the increase of parameter a3

causes slight growth of the amplitude of oscillator

(Fig. 6a). This is due to the fact that the suppression

effect is slightly worsened. The oscillator reaches the

maximal amplitude in bifurcation point where the NT

changes into ST solution. If the value exceeds acr, the

amplitude of pendulum reaches zero and its motion

(a) (b)

Fig. 5 Frequency response for the oscillator (a) and the pendulum (b), for a3 = 0.1, obtained by the continuation method

(a) (b)

Fig. 6 Bifurcation diagram: a3 versus maximal amplitude of the oscillator (a) and the pendulum (b) for # = 1, obtained by

continuation method
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vanishes. Then, the pendulum plays just a role of

additional mass of the oscillator.

3.2 Pendulum swings control

An autoparametric system can display in resonance

condition different behaviours including periodic,

quasi-periodic, non-periodic and also chaotic [18].

Moreover, the occurrence the resonance often goes

along with the saturation phenomena [19]. Therefore,

the control dynamics and tuning are important in such

systems. Due to the fact, that both subsystems in such

systems are coupled by inertial term, the control of the

pendulum motion by damper mounted in the suspen-

sion is very difficult.

The parametric damping analysis presented in [20],

showed that the increase of pendulum damping

significantly reduced or even eliminated the dynamic

vibration absorption phenomenon. While the

increased of the oscillator damping only insignifi-

cantly reduced the absorption effect. Therefore, the

control of an autoparametric system by oscillator

damping looks promising from a vibration suppression

effect point of view.

The bifurcation diagrams of the oscillator (Fig. 7a)

and the pendulum (Fig. 7b) show that different

responses are possible. We can see that, for value

about a3 \ 0.025 two stable periodic solutions of the

pendulum exist (marked as solution nos. 2 and 3 in

Fig. 7b), but only one for the oscillator (Fig. 7a).

These solutions nos. 2 and 3 represent the pendulum

swinging where the pendulum’s vibration centre is

shifted (Figs. 10a, 11a, for s\ 1,000). Depending on

the initial conditions the centre of the swinging may be

shifted in the positive (Fig. 10a, solution no. 2) or the

negative (Fig. 11a, solution no. 3) direction. Of

course, the two possible shifts are symmetric around

the lower static position of the pendulum. If the MR

damping is located between a3 = 0.025 and

a3 = 0.07, then we observe only one stable pendulum

non-trivial solution (no. 1). The ST solution is denoted

as solution no. 0.

To verify bifurcation diagrams, the basin of attraction

have also to have been done (Fig. 8). The basins of

attraction have been performed using the Dynamics

package [21]. In Fig. 8a we observe two possible NT

stable solutions represented by double-point attractors

no. 2 with the pink colour basins of attraction (corre-

sponding solution no. 2 in Fig. 7b) and double-point

attractor no. 3 with the grey colour basins of attraction

(corresponding solution no. 3 in Fig. 7b). The semi-

trivial solution is represented by attractor no. 0, with the

blue colour basins of attractor. These basins of attraction

agree with the results of bifurcation diagrams obtained

by a continuation method. Next, for a3 = 0.05 we

observe only one double point attractor (no. 1, corre-

sponding to the solution of no. 1 in Fig. 7b) with the pink

colour basins of attraction. Introducing MR damping

(a) (b)

Fig. 7 Bifurcation diagram: MR damping versus the maximal amplitude of the oscillator (a) and the pendulum (b) for # = 0.88,

obtained by continuation method
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caused a reduction of the pendulum vibration centre shift

while the basins of attraction for semi-trivial solution are

much larger with a less complicated structure. Because

the basins of attraction have a fractal structure, the

control of dynamics using the initial condition of the

pendulum is very difficult. Therefore, we used the

amplitude of the pendulum as the control signal.

In order to control the system in the closed-loop

algorithm, Eq. 1 can be modified by substituting a3 with

a3 ¼ a3ðuðu; sÞÞ ð5Þ

where u ¼ f ðu; sÞ is a control function which depends

on the time and position of the pendulum. The scheme

of closed-loop control algorithm to jump from attrac-

tor nos. 2 to 3 or from attractor nos. 3 to 2 is presented

in Fig. 9. Based on results in Fig. 7b, in order to

control a jump between attractors nos.2 and 3 (case 1)

or vice versa (case 2), the following value of MR

damping parameter is assumed

Fig. 8 Basins of attraction

of the pendulum: # = 0.88,

a3 = 0.01 (a), a3 = 0.05 (b)

Fig. 9 Scheme of control algorithm dedicated to jump from

attractor no. 2 into 3 or vice versa

Fig. 10 Time histories of

the pendulum (a) and the

oscillator (b) during the

jump from the solution no. 3

into 2 for fixed frequency

# = 0.88 with applied

control algorithm
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a3ðuÞ ¼
0:01 if u� 0

0:05 if u\0

�
ð6Þ

where u is calculated from a simple function u = s - U.

Parameter U for the system without control, have

constant value U = 0 when s 2 h0; 1;000i; then u C 0

and a3 = 0.01. For time s 2 ð0;1Þ the proposed

control method is activated. Now, parameter U have

initial values U = 0 and is to be reinitialized

U = si ? 50 in the point i when uðsiÞ[ 1:1 (case

1) or uðsiÞ\�1:1 (case 2). New value of U gives

possibility to change damping to a3 = 0.05, because

u \ 0 in time window s 2 hsi; si þ 50i: Analyzing the

results presented in Figs. 10 and 11, we may conclude

that the pendulum swings can be controlled by appli-

cation of a simple control algorithm based on amplitude

of the pendulum response. During the second impulse

of the MR damping activation, the pendulum jumps

from attractor nos. 2 to 3 (Fig. 11) or 3 to 2 (Fig. 11).

The change of the pendulum solution occurs

smoothly and does not cause a temporary increase of

oscillator vibrations. Disadvantage of the proposed

control method is that we have to know an exact

number of solutions for the applied MR damping.

4 Chaotic motion under MR damping influence

4.1 Influence MR damping on chaos

Chaos is a state where small variations in initial

conditions produce different results, in such a way

that the long-term behaviour of chaotic systems

cannot be predicted. This kind of motion is

unwanted, if the pendulum is to play the role as a

dynamical absorber.

The two parameter space plots are calculated to

investigate the effects of the influence of MR damping

on chaos near the main resonance. For each value of

the varied parameter, the same initial conditions (all

equal to zero except u ¼ 0:1) are used. The following

parameters identified from laboratory rig [4] are used

to simulations: a1 = 0.3054, a2 = 0.1, l = 14.6863,

k = 0.1342, q = 2.3239, c = 0. The first 500 excita-

tion periods were excluded in the analysis.

In Fig. 12a the two parameter space plot: the frequency

of excitation (#) versus MR damping coefficient (a3) for

MR model with hysteretic effect is presented (e1 = 10,

e2 = 1). A similar plot was calculated for system without

a hysteretic loop (Fig. 12b, e2 = 0) to observe influence

of the hysteretic phenomenon on the chaotic behaviour.

Both diagrams are similar, but one can see some

differences, especially near frequency # = 0.7. The

system without a hysteretic loop has a slightly larger

chaotic region.

The blue colour indicates chaotic motions esti-

mated based on value of maximal Lyapunov expo-

nent (Lyapmax). To have better insight into the

parameters space plot and its verification, the bifur-

cation diagrams crosschecks have been done. The

vertical cross-check for # = 0.8, Fig. 13a and hori-

zontal cross-check a3 = 0.35, Fig. 13b are presented.

The corresponding maximal Lyapunov exponents

and strange attractors (in the chaotic regions) were

Fig. 11 Time histories of

the pendulum (a) and the

oscillator (b) during the

jump from solution no. 2

into 3 for fixed frequency

# = 0.88 with applied

control algorithm
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calculated, too. The positive value of the Lyapmax

indicates that the blue area in bifurcation diagrams

represents the chaotic behaviour. As we may see, the

chaotic response occurs near the main parametric

resonance (and near the absorption region), located

between # & 0.6 - 1.35. We can clearly observe

that MR damping generally can reduce chaotic

motion.

However, increase MR damping for some param-

eters can give rise to chaotic motion (for example, the

new region near: # & 0.8 a3 & 0.5, in Fig. 12a). It

means that the increase of MR damping may not

guarantee suppression of chaotic oscillations. There-

fore, the control method should be applied.

4.2 Chaos and rotation control

As it is pointed in papers [4, 22] and as well in the

previous paragraph, the autoparametric system can

exhibit dangerous motion near the main parametric

resonance. If a system works in this region then,

rotation or chaotic oscillations occur. Therefore, we

present a qualitative analysis of the pendulum motions,

based on the pendulum velocity and magnetorheolog-

ical damping. The calculations were performed in

Matlab for fixed initial conditions: Xð0Þ ¼ 0; _Xð0Þ ¼
0;uð0Þ ¼ 0:

Analysing results presented in Fig. 14, possible

vibrations of the pendulum are divided in five types:

Fig. 12 Two parameter

space plot: frequency of

excitation versus MR

damping for system with

(a) and without

(b) hysteretic loop

Fig. 13 Bifurcation

diagrams and maximal

Lyapunov exponents:

vertical crosscheck for

# = 0.8 (a) and horizontal

crosscheck for a3 = 0.35

(b) of Fig. 12a
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1. Chaotic motion (brown colour) This kind of

vibrations was identified based on the difference

between the original trajectory ðuðsÞ; _uðsÞÞ; and

the perturbed trajectory ðu0ðsÞ; _u0ðsÞÞ; of the

pendulum. Calculations of the second trajectory

start at time s* = 5,000. At the moment perturbed

trajectory has initial values u0ðs�Þ ¼ uðsÞ þ du
and _u0ðs�Þ ¼ _uðsÞ þ d _u where du ¼ d _u ¼
10�6: In the calculations it was assumed that

system vibrations are chaotic when

maxð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuðsÞ � u0ðsÞÞ2 þ ð _uðsÞ � _u0ðsÞÞ2

q
Þ[

0:005; for s 2 h5000� 7000i: If the relationship

is not satisfied them pendulum vibrations are

regular.

2. Regular motion:

2a (orange colour). The pendulum is located in

the upper or lower position when uðsÞ ¼
pþ k2p; or uðsÞ ¼ 2kp; for k = 1, 2, …
, respectively. This kind of motion was

identified by a simple criterion _uðsÞ ¼ 0; in

practice abs( _uðsÞÞ\�1 ¼ 0:001:

2b (yellow colour). The pendulum rotates in

clockwise or counter clockwise direction. In

this case, velocity of the pendulum satisfies

one of the conditions: maxð _uðsÞÞ[ 0 and

ð _uðsÞÞ[ 0 or maxð _uðsÞÞ\0 and

minð _uðsÞÞ\0:

2c (blue colour). An asymmetrical (shifted)

swings of the pendulum. The mean of

vibrations is shifted from the upper or lower

position. In numerical considerations

description of this kind of vibrations was

accepted by the form: maxð _uðsÞ[ Þ0;
minð _uðsÞÞ\0 and abs(meanð _uÞÞ[
�2 ¼ 0:01:

2d (navy blue colour). Symmetrical (classical)

vibrations. It is the last kind of motion where

mean of value vibrations is kp for

k = 0, 1, 2, …. Now, this motion have to

satisfy the relations: max ð _uðsÞÞ[ 0;

minð _uðsÞÞ\0 and abs(meanð _uÞÞ\�2 ¼
0:01: The variant 2a (ST solution) is a

special case of variant 2d.

Controlling of the system dynamics by angular

velocity of the pendulum is difficult, because MR

damping must be activated precisely for the selected

pendulum position. Therefore, we propose impulse

activation or deactivation of MR damping in closed-

loop algorithm until a satisfactory solution is obtained.

In order to control in the closed-loop algorithm, the

Eq. 5 can be modified to

a3 ¼ a3ðuð _u; sÞÞ ð7Þ

where u ¼ uð _u; sÞ is a control function. Figure 14

presents the possibility of the existence of two kinds of

motions for a3 = 0.45. The pendulum can rotate (2b)

or perform an asymmetrical vibrations (2c). To change

solution from (2c) to (2b) and vice versa following

control method is proposed

a3ðsÞ ¼
A if s� u� 0

AC if s� u\0

�
ð8Þ

where A is a MR damping for system without control,

AC is MR damping used for control. The Eq. 8 can be

used to describe two control algorithms. The first

method generates a jump from swings to rotation of

the pendulum (case from type of motion: 2c to 2b),

Fig. 15. The system without control has constant value

of control function u(s) = 0 for s 2 h0; 2;000i and

MR damping is a3 = A = 0.45.

For the system with the control for s 2 ð2;000;1Þ;
u(s = 2,000) = 0 and u(s) can be changed to new

value uðsÞ ¼ sþ Ds when absð _uðsÞÞ\B and s -

u(s) [ 0. This change of the control function uðsÞ ¼
sþ Ds causes existence of a time window

Ds when s� uðsÞ\0 and magnetorheological damp-

ing is activated to value a3 = AC. In numerical

calculations length of this time window Ds is 50.

α
3

0    0.175 0.35 0.525 0.7  

0

1/4π

1/2π

3/4π

π

Fig. 14 Types of pendulum motions versus MR damping:

orange—the pendulum is in upper or lower position (semi-

trivial solution), yellow—rotation, blue—an asymmetric vibra-

tions, navy blue—symmetric vibrations, brown—chaotic

motion, frequency # = 0.8. (Color figure online)
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Fig. 15 Time histories of the pendulum (a, b), the oscillator (c) and changes of magnetorheological damping (d) during the jump from

solution no. 2c to 2b, for: _uðs ¼ 0Þ ¼ p
4
; A = 0.45, AC = 0.1, B = 0.01
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Fig. 16 Time histories of the pendulum (a, b), the oscillator (c) and changes of magnetorheological damping (d) during the jump from

solution no. 2b to 2c, for: _uðs ¼ 0Þ ¼ p
2
; A = 0.45, AC = 0.7, B = 1.1
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Fig. 17 Time histories of the pendulum (a, b), the oscillator (c) and changes of magnetorheological damping (d) during the jump

solution from no. 1 to 2b, for: _uðs ¼ 0Þ ¼ p
4
; A = 0.35, AC = 0.1, B = 0.01
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Fig. 18 Time histories of the pendulum (a, b), the oscillator (c) and changes of magnetorheological damping (d) during the jump

solution from no. 2b to 1, for: _uðs ¼ 0Þ ¼ p
2
; A = 0.35, AC = 0.7, B = 1.1
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Values of parameters are AC = 0.1 and B = 0.01,

where B is a parameter estimated from time series. In

this case magnetorheological damping a3 = AC = 0.1

has smaller values than system without control

a3 = A = 0.45. Second parameter B have to be close

to zero, because absolute values of pendulum velocity

absð _uðsÞÞ for rotation is greater than zero. When

absð _uðsÞÞ approaches to zero and is smaller than

B, absð _uðsÞÞ\B; then a change of the damping is

activated. A final effect of the first method is a jump of

the solution to rotation, Fig. 15.

In the opposite case, the second method changes the

solution from rotation to swings of the pendulum. In

the presented case a jump from 2b to 2c is possible for

parameters AC = 0.7 and B = 1.1 (Fig. 16). Now

magnetorheological damping a3 = AC = 0.7 has

greater values than system without control

a3 = 0.45. The pendulum has the highest velocity

during rotation, therefore parameter B have to be

estimated from time series as 0.9 maxð _uðsÞÞ:
The control function can be changed for the

condition absð _uðsÞÞ[ B and s - u(s) [ 0. This

modification can produce a jump from rotation to

another attractor.

Considered control methods were tested and the

results are shown in Fig. 16.

Analysing results presented in Figs. 15 and 16, we

can conclude that selection of the solution is possible

by application of the proposed control algorithm.The

same control methods were used to change solution

from motion denoted as 1 (chaotic motion) to

2b (rotation) and vice versa (see Fig. 17).

The proposed control allows a quick change from one

kind of motion into other. Additionally, the presented

algorithms can be easily applied to a experimental

system (which is already built and now algorithms are

implemented). Experimental investigations are impor-

tant, because of possible practical applications, e.g. to

maintain the rotation of the pendulum (harvester prob-

lem) or to suppress the oscillator motion by the pendulum

swinging (the pendulum absorber) (see Fig. 18).

The MR dampers are among the most promising

devices for vibration suppression in many fields of

engineering interest, both structural and mechanical

[23]. Additionally, these devices are semiactive

devices which offer the flexibility and versatility of

the active systems and the reliability of the passive

ones [24]. The advantage of MR dampers over

conventional dampers are that they are simple in

construction, compromise between high frequency

isolation and natural frequency isolation, they of fer

semi-active control, use very little power, have very

quick response, has few moving parts, have a relax

tolerances and direct interfacing with electronics [25].

5 Conclusions and remarks

The dynamic response, bifurcation analysis and closed-

loop control of a magnetorheologically damped Duffing

system with an attached pendulum vibration absorber,

operating under the parametric resonance conditions,

are discussed in this paper. The MR damping analysis

shows that an increase of the MR oscillator damping

practically does not reduce the absorption effect

(Fig. 6a shows an almost constant pre-bifurcation value

of the maximum amplitude of oscillation versus a3).

This result is essential, because a3 parameter can be

used to control the system without a loss of an efficiency

of dynamic vibration suppression.

The MR damping generally reduced chaotic

motion, but for some MR damping parameters we

are able to raise of chaotic vibrations (change the

rotation into chaos). Additionally, by applying MR

damping, we can move the chaotic regions.

The numerical study reveals that for selected

parameters two different stable solutions are possible.

They are characterised by a positive or negative shift

of the vibration centre. The direction of the shift

depends on the initial conditions put on pendulum

motion. The range of parameters for which one or

more stable or unstable solutions may exist has been

determined by a continuation method.

The activation of MR damping, for a specific

position of the pendulum seems to be difficult to be

used in practice because of a fractal structure of the

basins of attraction. Therefore, methods of control

based on the pendulum angular velocity and displace-

ment is proposed. These methods allow keeping the

response on the required attractor or change one

solution into another in a quick way. The impulse

activation does not cause a change the proper tuning of

the system.

In the next step the proposed algorithms to control,

rotation, swinging or chaotic motion of the pendulum

will be implemented in a real laboratory system.

Moreover, an especially designed SMA spring will be

added to create ‘‘smart active suspension’’.
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