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Abstract Large amplitude vibrations of a Timo-

shenko beam under an influence of temperature are

analysed in this paper. In the considered model the

temperature increases instantly and the heat is uni-

formly distributed along the beams length and cross-

section. The mathematical model, represented by

partial differential equations takes into account ther-

mal and mechanical loadings. Next, the problem is

reduced by means of the Galerkin method, considering

the first three natural vibration modes of a simply

supported beam in the both ends. The influence of the

temperature on amplitudes and localisation of the

resonance zones and stability of the solutions is

studied numerically and analytically by the multiple

time scale method. The bifurcation points, existence of

unstable lobes and transition from regular to chaotic

oscillations are shown.

Keywords Composite beam � Nonlinear

vibrations � Thermal loading � Bifurcations �
Chaotic oscillations

1 Introduction

The beams are fundamental structural elements with

application in many branches of the industry. Fre-

quently, these structures are subjected to dynamic

loading leading to large amplitude vibrations. Large

vibrations introduce a geometrical type of non-linearity

that influences the dynamic behaviour of a structure. In

this case the structures stiffness, and consequently the

resonance frequencies and mode shapes, are amplitude

dependent. Linear and nonlinear vibrations of beams

have been deeply investigated for many years and were

reviewed, for example, in the books of Nayfeh and

Mook [1] and of Nayfeh and Pai [2]. Nonlinear

vibrations of the Euler–Bernoulli or shear deformable

beam models have been studied there and the influence

of the nonlinear terms on the bifurcation scenario and

possible resonances have been discussed in details. The

advanced composite beam theory has been presented in

[3]. The beam models considered various configurations

of lamina with reinforced fibers orientation, closed or

open cross-section shapes. The beams are also used to

model rotating blades dynamics, for example blades of a

helicopter rotor [4, 5] or blades of turbines. Many

authors use the classical FEM [6, 7] and semi-analytical

methods [8, 9] to study this problem.
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In most of the analysis the environmental condi-

tions are neglected. One of very important factors

which has to be considered is temperature, which may

vary in high ranges in real mechanical or aerospace

applications. Temperature variations can and do affect

substantially the vibration response of a structure.

Thermal loads introduce stresses due to thermal

expansion, which lead to changes in the modal

properties. The basic problems of the thermoelastic

vibrations can be found in the books of Boley and

Weiner [10], Nowacki [11] and Thorton [12].

Although the temperature and elastic behaviours are in

fact coupled [12, 13] for thin structures it is often

reasonable to assume that the temperature distribution is

independent of the deformation or that the structure gets

the elevated temperature instantly. This approach is

widely used to model the thermoelastic behaviour of

structures. The geometrically nonlinear vibrations of

structures at the elevated temperature are studied by

many authors as [14–16], etc. In [17] and [18] thermo-

mechanical, geometrically nonlinear vibrations of plates

and beams, correspondingly, are studied. The authors

found a very reach nonlinear dynamic behaviour of the

system including, periodic, quasi-periodic and chaotic

oscillations. A thermomechanical model of the vibration

of a Timoshenko beam after its one mode reduction is

studied by multiple time scale method in [19].

In the present work the study is extended by using

three mode reduction of the beam’s model for

thermoelastic vibration. The goal of this paper is to

show specific dynamic phenomena of geometrically

nonlinear vibrations of a Timoshenko beam subjected

to thermal and mechanical loadings. The phenomena,

such as bifurcations, non-periodic or chaotic oscilla-

tions which arise due to varying temperature are taken

into account in the study.

2 A model of a Timoshenko beam under

thermo-mechanical loadings

The considered structure is a beam made of elastic

composite material subjected to thermal and mechan-

ical loadings. The beam orientation together with

coordinates and indicated length l, thickness h, and

width b, is presented in Fig. 1.

The mathematical model of the Timoshenko beam

presented in Fig. 1 has been derived in papers [13, 16].

The dimensionless equations of motion have the form:

o2u

ox2
¼ Gu þ GT

u

o2w
ox2
þ ba

ow

ox
þ w

� �
� d2

ow
ot
� o2w

ot2

¼ GT
1 b

o2w

ox2
� ow

ox

� �
� d1

ow

ot
� o2w

ot2

¼ �pþ GT
2 þ GL

2 ð1Þ

where u, w, w are dimensionless displacement field

coordinates, a = 12l2/h2, b = kG/E, k—shear cor-

rection factor, G, E—respectively shear and Young

modulus, p—external mechanical loading. Also linear

damping terms with damping coefficients d1, d2 have

been added to the model.

The components Gu, Gu
T , G1

T , G2
T , G2

L are defined

as:

Gu ¼�
ow

ox

o2w

ox2
; GT

u ¼ aT

och

ox
; GT

1 ¼ aT

12l

h

ovh

ox

GT
2 ¼aTch

o2w

ox2
; GL

2 ¼K
o2w

ox2
; K ¼�

Z1

0

n
ow

on
o2w

on2
dn

ð2Þ

aT is a linear coefficient of a thermal expansion, and

vh ¼
Z1=2

�1=2

hðx; z; tÞzdz; ch ¼
Z1=2

�1=2

hðx; z; tÞdz: ð3Þ

where h (x, z, t) is a space and time dependent

dimensionless function of a temperature distribution.

Assuming that the distribution of temperature along

x and z axis is constant: h (x, z ) = const., we get:

GT
u ¼ 0; vh ¼ 0; ch ¼ DT; where DT is a difference

between the reference temperature and the current

temperature. According to the paper [19] longitudinal

displacement can be found from the first equation of

the set (1) and the model can be simplified to two

partial differential equations, having the dimension-

less form:

Fig. 1 Schematic beam model with indicated coordinates and

dimensions
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o2w
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ox

� �
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ot2
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ð4Þ

We note that the dimensionless displacement of the beam

is expressed versus beam’s length w = w*/l, where w* is

the displacement in physical units. It has been assumed

that mechanical loading p(x, t) is distributed along x axis

and is expressed by a function of space and time.

3 Multimodal model reduction

The model of a beam has been reduced from partial

differential equations (PDE) to ordinary differential

equations (ODE) by means of modal projection and then

by using Galerkin’s orthogonalisation method. For this

purpose the generalized displacements vector is expanded

as a sum of the product of the quasi-normal modes

wn(x), wn(x) and the time dependent functions qn(t):

w x; tð Þ ¼
XNf

n¼1

wnðxÞqnðtÞ

w x; tð Þ ¼
XNf

n¼1

wnðxÞqnðtÞ
ð5Þ

where Nf is a number of assumed modes. Substituting

Eq. (5) into (4) we get

XNf

n¼1

d2wn

dx2
þ ab

dwn

dx
� wn

� �� �
qnðtÞ

� d2

XNf

n¼1

wn _qnðtÞ �
XNf

n¼1

wn €qnðtÞ ¼ 0

b
XNf

n¼1

d2wn

dx2
� dwn

dx

� �
qnðtÞ � d1

XNf

n¼1

wn _qnðtÞ

�
X

n

wn €qnðtÞ ¼ �pþ GL
2 þ GT

2

ð6Þ

where

GL
2¼K

XNf

n¼1

qn tð Þd
2wn

dx2
; GT

2 ¼aTDT
XNf

n¼1

qn tð Þd
2wn

dx2

p¼p x;tð Þ; K¼�
Z1

0

XNf

n¼1

XNf

j¼1

nqn

dwn nð Þ
dn

qj

d2wj nð Þ
dn2

dn:

ð7Þ

According to the Galerkin’s procedure the quasi-

normal modes should satisfy geometrical and dynam-

ical (natural) boundary conditions. For the projection

we take linear modes of beam natural vibrations

reported in ‘‘Appendix 1’’. By using the fact that wn

and wn are solutions of the eigenvalue problem we

obtain:

XNf

n¼1

�x2
nwnqnðtÞ � d2

XNf

n¼1

wn _qnðtÞ �
XNf

n¼1

wn €qnðtÞ ¼ 0

XNf

n¼1

�x2
nwnqnðtÞ � d1

XNf

n¼1

wn _qnðtÞ �
XNf

n¼1

wn €qnðtÞ

¼ �pþ GL
2 þ GT

2 ð8Þ

Multiplying (6)1 by mode wm , and (6)2 by mode wm

(x ), then summing up both equations we have

XNf

n

x2
n wmwn þ wmwn½ �qnðtÞ

þ
XNf

n¼1

d2wnwm þ d1wnwmð Þ _qnðtÞ

þ
XNf

n

wmwn þ wmwn½ �€qnðtÞ

¼ wm p� GL
2 � GT

2

� �
ð9Þ

Then, integrating (9) over the beam length, invoking

the orthogonality condition,

Z1

0

wmwn þ wmwnð Þdx ¼ 1 for n ¼ m

0 for n 6¼ m

(
ð10Þ

and assuming proportional damping the equations are

transformed into the form:

€qnðtÞþ 2nnxn _qn tð Þþx2
n qnðtÞ

¼
Z1

0

pðx; tÞwnðxÞ�GL
2ðx; tÞwnðxÞ�GT

2 ðx; tÞwn

� 	
dx

ð11Þ

where, xn is the nth natural frequency of the linear

undamped Timoshenko beam and nn is a dimension-

less modal damping coefficient.

Let’s consider the first three modes of the expansion

(5), Nf = 3. Applying the formulae (5)–(11) we get the

equations of motion
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€q1 tð Þ þ 2n1x1 _q1 tð Þ þ x2
1 q1 tð Þ þ C1Kq1 tð Þ

þ CT
1 aTDTq1 tð Þ ¼ C

f
1f tð Þ

€q2 tð Þ þ 2n2x2 _q2 tð Þ þ x2
2 q2 tð Þ þ C2Kq2 tð Þ

þ CT
2 aTDTq2 tð Þ ¼ C

f
2f tð Þ

€q3 tð Þ þ 2n3x3 _q3 tð Þ þ x2
3 q3 tð Þ

þ C3Kq3 tð Þ þ CT
3 aTDTq3 tð Þ ¼ C

f
3f tð Þ

ð12Þ

Coefficient K is calculated from (7) and has the form

K ¼ K11q2
1 þ K12q1q2 þ K22q2

2 þ K13q1q3

þ K23q2q3 þ K33q2
3 ð13Þ

where

K11 ¼�
1

4
p2B2

1; K12 ¼ 2p2B1B2; K13 ¼�3p2B1B3;

K22 ¼�p2B2
2; K23 ¼ 6p2B2B3; K33 ¼�

9

4
p2B2

3

The coefficients Bn (n = 1, 2, 3) are defined in

‘‘Appendix 1’’.

External loading has been assumed as distributed

periodic force

p x; tð Þ ¼ P xð Þf tð Þ ð14Þ

where P(x) is a space function of distributed loading

and f(t) is a function of time varying loading which is

accepted as a time periodic function

f tð Þ ¼ fa sin Xt ð15Þ

with fa amplitude and X frequency of external loading.

Substituting (13) and (15) into (12) we get a set of

nonlinear equations

€q1 þ 2n1x1 _q1 þ x2
1 q1 þ C1;111q3

1 þ C1;122q1q2
2

þ C1;123q1q2q3 þ C1;133q1q2
3 þ C1;112q2

1q2

þ C1;113q2
1q3 þ CT

1 DTq1 ¼ p1 sin Xt

€q2 þ 2n2x2 _q2 þ x2
2 q2 þ C2;222q3

2 þ C2;211q2q2
1

þ C2;123q1q2q3 þ C2;233q2q2
3 þ C2;122q1q2

2

þ C2;223q2
2q3 þ CT

2 DTq2 ¼ p2 sin Xt

€q3 þ 2n3x3 _q3 þ x2
3 q3 þ C3;333q3

3 þ C3;311q3q2
1

þ C3;123q1q2q3 þ C3;322q3q2
2 þ C3;133q1q2

3

þ C3;233q2q2
3 þ CT

3 DTq3 ¼ p3 sin Xt ð16Þ

The parameters p1, p2, p3 for external loading distrib-

uted according to the normalised mode shape take

definitions

p1 ¼ C
f
1fa; p2 ¼ C

f
2fa; p3 ¼ C

f
3fa ð17Þ

The values of coefficients of Eq. (16) are determined

for data reported in ‘‘Appendix 2’’ for a case of a

symmetric cross-ply laminated beam composed of 20

orthotropic layers.

4 Analytical solutions

Differential equations of motion (16) are nonlinearly

coupled by cubic terms. Therefore, in order to solve

the problem analytically the approximate method of

multiple time scales is used [21]. The set of Eq. (16) is

reordered by introducing a formal small parameter e,

€q1þx2
1 q1 ¼ e �~l1 _q1� ~C1;111q3

1� ~C1;122q1q2
2

�
� ~C1;123q1q2q3� ~C1;133q1q2

3� ~C1;112q2
1q2

� ~C1;113q2
1q3� ~CT

1 DTq1þ ~p1 sinXt
�

€q2þx2
2 q2 ¼ e ~l2 _q2� ~C2;222q3

2� ~C2;211q2q2
1

�
� ~C2;123q1q2q3� ~C2;233q2q2

3� ~C2;122q1q2
2

� ~C2;223q2
2q3� ~CT

2 DTq2þ ~p2 sinXt
�

€q3þx2
3 q3 ¼ e ~l3 _q3� ~C3;333q3

3� ~C3;311q3q2
1

�
� ~C3;123q1q2q3� ~C3;322q3q2

2� ~C3;133q1q2
3

� ~C3;233q2q2
3� ~CT

3 DTq3þ ~p3 sinXt
�
ð18Þ

where, l1 = 2n1 x1 , l2 = 2n2 x2 , l3 = 2n3 x3. The

formal small parameter e is used for grouping small

terms on the right side of Eq. (18), thus the coefficients

are defined as: li ¼ e~li;Ci;klm ¼ e ~Ci;klm; CT
i ¼ e ~CT

i ;pi ¼
e~pi; where i = 1, 2, 3, k, l, m = 1, 2, 3.

The solution for q1 (t ), q2 (t ), q3 (t ) is assumed in

the form of a series of a small parameter e

q1ðt; eÞ ¼ q10ðT0; T1;T2Þ þ eq11ðT0; T1; T2Þ
þ e2q12ðT0; T1; T2Þ

q2ðt; eÞ ¼ q20ðT0; T1;T2Þ þ eq21ðT0; T1; T2Þ
þ e2q22ðT0; T1; T2Þ

q3ðt; eÞ ¼ q30ðT0; T1;T2Þ þ eq31ðT0; T1; T2Þ
þ e2q32ðT0; T1; T2Þ ð19Þ
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Generalised qi coordinate (i = 1, 2, 3) is expressed

respectively in the zeroth, first and second order

perturbations, qi,j (T0 , T1 , T2 ), (j = 0, 1, 2). Dimen-

sionless time is also expanded in a series of a small

parameter

t ¼ T0 þ eT1 þ e2T2 þ � � � ð20Þ

where T0 , T1 , T2, are respectively the fast and slow

time scales. The first and the second time derivatives

are now defined with respect to the introduced time

scales:

d

dt
¼ o

oT0

þ e
o

oT1

þ e2 o

oT2

þ � � �

¼ D0 þ eD1 þ e2D2 þ � � �
d2

dt2

¼ D2
0 þ 2eD0D1 þ e2 2D0D2 þ D2

1

� �
þ � � � ð21Þ

The operator Dm
n ¼ om

oTn
denotes the mth order partial

derivative with respect to the nth time-scale.

Considering the three mode reduction we may

expect the main resonances occurring around the

natural frequencies x1, x2 and x3. The analytical

solutions are determined around these resonance

zones.

The solutions are sought around the natural fre-

quencies of the beam, thus excitation frequency X has

to satisfy the condition

X2 ¼ x2
i þ eri ð22Þ

where ri is the frequency detuning parameter of ith

resonance zone (i = 1, 2, 3).

The methodology of the analytical solution deter-

mination will be demonstrated for the first resonance

zone around x1. For the other two cases the procedure

is identical, just coordinates q2 and q3 play dominant

role around the second and the third resonance,

respectively.

According to the method, the solution (19) together

with the derivatives defined by (21) is substituted into

(18). Next, grouping terms with respect to proper

orders of e , we get a set of differential equations in the

successive perturbation orders e0-order

D2
0q10 þ X2

1q10 ¼ 0

D2
0q20 þ x2

2q20 ¼ 0

D2
0q30 þ x2

3q30 ¼ 0 ð23Þ

e1-order

D2
0q11þX2

1q11 ¼ r1q10� 2D0D1q10�l1D0q10

�CT
1 DTq10�C1;111q3

10�C1;112q2
10q20

�C1;122q10q2
20�C1;113q2

10q30

�C1;123q10q20q30�C1;133q10q2
30

þ p1 sinX1T0

D2
0q21þx2

2q21 ¼ r1q10� 2D0D1q20�l2D0q20

�CT
2 DTq20�C2;222q3

20�C2;211q20q2
10

�C2;122q10q2
20�C2;223q2

20q30

�C2;123q10q20q30�C2;233q20q2
30

þ p2 sinX2T0

D2
0q31þx2

3q31 ¼ r1q30� 2D0D1q30�l3D0q30

�CT
3 DTq30�C3;333q3

30�C3;311q30q2
10

�C3;133q10q2
30�C3;233q20q2

30

�C3;123q10q20q30�C3;322q30q2
20

þ p3 sinX3T0 ð24Þ

e2-order

D2
0q12 þ X2

1q12 ¼ r1q11 � l1 D0q11 þ D1q10ð Þ
� 2D0D1q11 � 2D0D2q10 � D2

1q10 � CT
1 DTq11

� 3C1;111q2
10q11 � C1;112q10ð2q11q20 þ q10q21Þ

� C1;122q20ðq11q20 þ 2q10q21Þ
� C1;113q10ð2q11q30 þ q10q31Þ
� C1;123ðq11q20q30 þ q10q21q30 þ q10q20q31Þ
� C1;133q30ðq11q30 þ 2q10q31Þ

D2
0q22 þ x2

02q22 ¼ �l2 D0q21 þ D1q20ð Þ
� 2D0D1q21 � 2D0D2q20 � D2

1q20

� CT
2 DTq21 � 3C2;222q2

20q21

� C2;211q10ð2q11q20 þ q10q21Þ
� C2;122q20ðq11q20 þ 2q10q21Þ
� C2;223q20ð2q21q30 þ q20q31Þ
� C2;123ðq11q20q30 þ q10q21q30 þ q10q20q31Þ
� C2;233q30ðq21q30 þ 2q20q31Þ

D2
0q32 þ x2

03q32 ¼ �l3 D0q31 þ D1q30ð Þ
� 2D0D1q31 � 2D0D2q30

� D2
1q30 � CT

3 DTq31 � 3C3;333q2
30q31

� C3;311q10ð2q11q30 þ q10q31Þ
� C3;133q30ðq11q30 þ 2q10q31Þ
� C3;322q20ð2q21q30 þ q20q31Þ
� C3;123ðq11q20q30 þ q10q21q30 þ q10q20q31Þ
� C3;233q30ðq21q30 þ 2q20q31Þ ð25Þ
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We note that in the above equations the natural

frequency is expressed by frequency of external

excitation by means of (22).

In further analysis we exclude the internal reso-

nance case. Therefore the ratios of the natural

frequencies of the system are assumed to be incom-

mensurable numbers. In order to excite a selected

mode directly, we accept external excitation as: p1 [ 0

and p2 = 0, p3 = 0. In such a case, near the first

resonance zone the solution is manifested mainly by

the first coordinate. The coupling with the other

coordinates occurs in the higher perturbation orders.

Therefore solution of Eq. (23) has the form

q10ðT0; T1; T2Þ ¼ A1ðT1; T2Þ expðiXT0Þ
þ �A1ðT1; T2Þ expð�iXT0Þ

q20ðT0; T1; T2Þ ¼ 0

q30ðT0; T1; T2Þ ¼ 0

ð26Þ

where i ¼
ffiffiffiffiffiffiffi
�1
p

is the imaginary unit, A1 is the

complex amplitude and �A1 is complex conjugate.

Substituting solutions (26) into (24) and, after group-

ing the terms in proper exponential functions, we get

D2
0q11þX2q11¼ST1eiXT0þC1;111A3

1e3iXT0þcc ð27Þ

where cc means complex conjugate functions to those

written in the right side of Eq. (27) and ST1 represents

secular generating terms. In order to avoid secular

terms in the solution we require ST1 to be zero

2iXD1A1 � r1A1 þ il1A1Xþ 3C1;111A2
1
�A1 þ CT

1 DTA1

þ 1

2
ip1 ¼ 0 ð28Þ

The particular solution of (27) has the form

q11 ¼
1

8X2
C1;111A3

1e3iXT0 þ cc ð29Þ

Substituting solution (29) into (25) we get

D2
0q12 þ X2q12 ¼ ST2eiXT0 þ NST2;1e2iXT0

þ NST2;2e3iXT0 þ cc ð30Þ

NST1, NST2 are nonsecular generating terms and they are

not directly reported here, and ST2 are secular generating

terms of the second order which should vanish

D2
1A1 þ 2iXD2A1 þ l1D1A1 þ

3

8X2
C2

1;111A3
1

�A2
1 ¼ 0:

ð31Þ

Taking into account the solutions (26) and (29),

expressing the complex amplitudes in the polar form

A1 ¼
1

2
a1ei/1 ð32Þ

using expansion (19), after transformation to the

trigonometric form, we obtain solutions in the zero-

th and the first order approximation

q1 ¼ a1 cos XT0 þ /1ð Þ þ e
C1;111

32X2
a3

1 cos 3 XT0 þ /1ð Þ

ð33Þ

Applying the so called reconstitution method [21], on

the basis of (28) and (31) we formulate the modulation

equations for the complex amplitudes A1 as the first

order ordinary differential equation

2X
dA1

dt
¼ e � 1

2
p1 þ �l1Xþ iCT

1 DT � ir1

��

þ3iC1;111A1
�A1

�
A1

�
þ e2 1

8X2
p1 iCT

1 DT
���

�ir1 þ l1XÞ � 15iC2
1;111A3

1
�A2

1

	
þ 3

2X2
C1;111A2

1 �
1

4
ip1 þ �A1 �iCT

1 DT
��

þir1 þ l1XÞ
�
þ 1

4X2
A1 �il2

1X
2

�

�i CT
1 DT � r1

� �2þ3C1;111p1
�A1

i�
: ð34Þ

Expressing complex amplitude A1 in the polar form

(32) and then separating the real and imaginary parts,

we get the so called modulation equations for ampli-

tude a1 and phase /1

da1

dt
¼� 1

2X
e l1Xa1þp1 cos/1ð Þ

þ 1

8X3
e2 3

2
C1;111l1a3

1X�l1p1Xsin/1

�

þp1 CT
1 DT�r1þ

9

4
C1;111a2

1

� �
cos/1

�

2Xa1

d/1

dt
¼ e CT

1 DT�r1

� �
a1þ

3

4
C1;111a3

1þp1 sin/1

� �

þe2 � 1

4X2
CT

1 DT�r1

� �2þl2
1X

2
h i

a1

�

þ 3

8X2
C1;111 �CT

1 DTþr1

� �
a3

1�
15

128
C2

1;111a5
1

þ p1

4X2
�CT

1 DTþr1�
3

4
C1;111a2

1

� �
sin/1

�p1l1

4X
cos/1

�
ð35Þ
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Amplitude a1 and phase /1 can be found from the

modulation Eq. (35), or for a steady state case from

algebraic equations equalling the derivatives to zero,
da1

dt
¼0;d/1

dt
¼0: Then, we can find the resonance curve

by determining sin/1 and cos /1 and after some

algebraic manipulations we get a polynomial type

equation depending on the system’s parameters:

b7z7 þ b6z6 þ b5z5 þ b4z4 þ b3z3 þ b2z2

þ b1zþ b0z ¼ 0 ð36Þ

where z = a1
2. Coefficients bk, k = 0, … 7, are

reported in ‘‘Appendix 3’’. On the basis of Eq. 36

we can study the influence of selected parameters on

the beam’s response. Having amplitude a1 the approx-

imate solution can be obtained from (33).

Stability of the solution is determined by analysis of

the modulation Eq. (35) which can be written in the

shorter form

da1

dt
¼ f1 a1;/1ð Þ

d/1

dt
¼ f2 a1;/1ð Þ

ð37Þ

Perturbing Eq. (37), considering a linear part of the

power expansion and then subtracting perturbed and

unperturbed equations we get a set of first order linear

differential equations in perturbations

_da1 ¼
of1

oa1

da1 þ
of1

o/1

d/1

_d/1 ¼
of2

oa1

da1 þ
of2

o/1

d/1

ð38Þ

where d means perturbation (variation) of the variable.

The stability depends on a real part of the eigenvalues

of the Jacobi matrix

J ¼
of1
oa1

of1
o/1

of2
oa1

of2
o/1

2
4

3
5: ð39Þ

The solution is unstable if at least one of the roots has

real part positive.

The solutions near the second and the third resonance

zones are found following the same procedure.

5 Numerical results

Numerical calculations have been carried out for

data presented in ‘‘Appendix 2’’ for a symmetric

cross-ply laminated composed of 20 layers compos-

ite beam. Amplitude and frequency of external load

are varied in order to demonstrate essential nonlin-

ear phenomena around the resonance zones or

bifurcation points.

The resonance curves obtained from analytical

Eq. (35) are presented in Fig. 2. The curves are plotted

for fixed temperature DT ¼ 20 and three selected

levels of excitation pi = 10-7,the so called modula-

tion pi = 10-6, pi = 5 9 10-6, i = 1, 2, 3. The sys-

tem is excited around the resonance assuming that the

harmonic excitation corresponds to the excited mode,

i.e. around the natural frequency xi only excitation pi

is activated. For a small level of excitation amplitude

pi = 10-7 resonance curves are similar to a linear

beam model. While increasing the amplitude the

curves exhibit stiffening effect around three consid-

ered resonances. Assuming the same intensity of

excitation, the resonance curves around the third

natural frequency get the smallest amplitudes com-

paring to two other cases (see Fig. 2c, d). The shape of

the lowest resonance curve presented in Fig. 2d is

shown in Fig. 2e in an enlarge scale. Because the

natural frequencies of the system are well separated

there is no internal resonance in the structure, the

coupling between modes exists only due to nonlinear

geometrical terms and for small oscillations is not

visible. The nonlinear dynamic phenomena arise

mainly near the first resonance zone and for relatively

large oscillations. The first observation is that there is a

loss of stability at the beginning, on the left side of the

resonance curve in Fig. 2a for p1 = 5 9 10-6. The

zoom of the beginning of this curve is visible in

Fig. 2b.

The influence of the temperature can be determined

from Eq.(35) (or 36). For the steady state we equalize

these equations to zero and determine amplitude for

selected values of temperature. To show the temper-

ature influence we plot the resonance curves for three

resonance regions and three selected temperatures

values DT ¼ �70; DT ¼ 0 and DT ¼ þ70; We

observe (Fig. 3) that the increased temperature shifts

the resonance region to lower frequencies (to the left

side) and for the negative value the curve is moved to

higher frequencies (to the right side), for all consid-

ered resonance regions. Apart from this the elevated

temperature increases oscillation amplitudes. This

phenomenon is visible around the first resonance zone

in particular (Fig. 3a). Moreover, one can notice that
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Fig. 2 Resonance curves for different excitation level, pi = 10-7, pi = 10-6, pi = 5 9 10-6, i = 1, 2, 3, around a the first, c the

second and d the third natural frequency; b zoom of the curve p1 = 5 9 10-6, e zoom of the curve p3 ¼ 10�7; DT ¼ 20
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unstable part of the curve is extended comparing to the

temperature DT ¼ 20 in Fig. 2a.

The analytical results have a very good agreement

comparing them with the ones obtained by direct

numerical integration. In Fig. 4 a comparison of the

analytical solution (solid line) with direct numerical

integration of the original ODE (Eq. 16) by Runge-

Kutta method is presented. We see a very good

agreement for relatively large oscillations. A differ-

ence is observed near low frequency, on the left hand

side of the curve around frequency X ¼ 0:01: Of

course, the analytical method works well only if

oscillations are not very large. For large oscillations

we apply continuation method by Auto package [22],

in order to discover bifurcation points and new

nonlinear phenomena.

In the further analysis we focus around the first

resonance zone considering large oscillations. We

increase meaningfully amplitude of external excita-

tion, p1 = 4 9 10-5. In spite of this fact, the solutions

obtained analytically (Fig. 5a) and numerically

(Fig. 5b) does not differ essentially. The main differ-

ence is visible on the borders of the resonance. In

contrast to the analytical solution the resonance curve

obtained from direct numerical integration of ODEs is

unstable, close to the maximal amplitudes. The zoom

z1 of this region is shown in Fig. 5c and more details of

the zoom z3 in Fig. 5d. We see that close to the top of

the resonance curve, the solution loses stability and an

additional unstable branch arises (Fig. 5d) which does

not occur in analytical solutions. Moreover, on the left

side about X ¼ 0:02 unstable solutions of large

Fig. 3 Resonance curves for different temperature levels,

DT ¼ �70;DT ¼ 0;DT ¼ þ70; around a the first p1 =

5 9 10-6, p2 = 0, p3 = 0, b the second p1 = 0, p2 =

5 9 10-6, p3 = 0 and c the third natural frequency

p1 = 0, p2 = 0, p3 = 5 9 10-6
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amplitude are obtained analytically which do not have

confirmation by direct numerical simulations (see left

side of Fig. 5a and zoom z2 in Fig. 5f).

Comparing the one mode reduction given in [19]

with the present study based on the three mode

reduction we may conclude that for periodic excitation

distributed according to the selected mode the

involvement of the rest modes is small. For small

vibration amplitudes the higher modes involvement

can be neglected. A difference however, appears for

larger oscillations. The course of the resonance curve

for the one mode or three modes reduction is similar as

presented in Fig. 5b but for the one mode reduction the

top of the resonance curve (zoom z1) is stable. This

part of z1 zone obtained for the one mode reduction is

presented in Fig. 5e. Of course, we may expect that the

involvement of a larger number of modes will be

crucial if the structure is tuned to the internal

resonance condition which is excluded from the

present study. Also the multimodal model allows

studying the system for a case of multimodal mechan-

ical or thermal loadings.

We may notice that for low frequencies there are

untypical lobes which are partially unstable (Fig. 5f).

We may expect that this part of the curve is sensitive

for the temperature change. The temperature influence

is presented in Fig. 6. The lobes are almost stable if the

temperature is low (DT ¼ �50). Elevated temperature

(c) DT ¼ 0; (e) DT ¼ 50; (g) DT ¼ 70 makes the

lobes unstable. Moreover, for temperature

DT ¼ 70the lower branch on the right side becomes

unstable too. Time histories (for one period) of the

solution q1 for temperature DT ¼ 70 and selected

excitation frequency, starting from low frequency and

then increasing it, is shown in Fig. 7. For the low

frequency (Fig. 7a–c) the beam response includes

more than one harmonic. Approaching the resonance

zone the response is dominated mainly by a single

harmonic corresponding to the excitation frequency

(Fig. 7d–g).

Increasing the temperature above a certain thresh-

old two new branches occur in the resonance curve

(Fig. 8). Close to the branch point these additional

solutions are unstable, but they become stable while

the frequency is increasing. It means that in a wide

frequency domain there are five possible solutions,

three of them are stable and two unstable. The

solutions located on the left hand side of the curve

are mainly unstable (see the zoom of low frequency

lobs in Fig. 8b). The system looses stability in this

region and we observe chaotic oscillations there (Fig.

9a). Depending on the initial conditions however,

another regular attractor coexists together with the

strange chaotic one. This is clearly visible in Fig. 9b in

which different basins of attraction of regular (two

points) and chaotic motion are present.

The elevated temperature changes dynamics of the

considered beam from regular to chaotic. The chaotic

attractor can be quenched by the decrease of the

temperature. In the bifurcation diagram in Fig. 10 the

reduction of the chaotic attractor is presented. Varying

temperature from DT ¼ 100 till DT ¼ 70 we observe

declining chaotic attractor with small periodic win-

dows, and about DT ¼ 74 there is a transition to

subharmonic regular motion of 9T-period and for

about DT ¼ 70 there is a transition to subharmonic

regular 2T-period motion. The scenario is presented in

Poincaré maps in Fig. 11. There is a visible jump from

chaotic to regular dynamics due to small temperature

variation from DT ¼ 75 to DT ¼ 74:

6 Conclusions and final remarks

Dynamics of a Timoshenko beam model under an

influence of the elevated temperature is analysed in this

paper. The model described by partial differential

Fig. 4 Resonance curve around the first natural frequency for

excitation level, p1 = 5 9 10-6; solid line analytical solution

obtained from ME, dots direct numerical integration of ODE
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Fig. 5 Resonance curves around the first natural frequency for

excitation level p1 = 4 9 10-5; a analytical result obtained

from ME, b direct numerical integration of ODE for three mode

reduction, c zoom of zone z1, d zoom of zone z3, e zoom of zone

z1 for a case of one mode reduction and e zoom z2 of the zone

with lobes
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Fig. 6 Resonance curves around the first natural frequency for excitation amplitude p1 = 4 9 10-5 and various temperatures;

a DT ¼ �50; c DT ¼ 0; eDT ¼ 50; g DT ¼ 70; b, d, f, h zoom of the low frequency lobes
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Fig. 7 Time histories (one period) for DT ¼ 70; a X ¼ 0:01045; b X ¼ 0:015; c X ¼ 0:01985; d X ¼ 0:023; e X ¼ 0:05 (stable upper

branch), f X ¼ 0:05 (unstable middle branch), g X ¼ 0:05 (stable lower branch)
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equations has been reduced to ordinary differential

equations and the detailed study has been carried out

for the first three vibration modes. On the basis of

analytical solutions it has been shown that the system

exhibits stiffening effect in the resonance curves for

relatively large amplitude of excitation. Moreover, the

instability of the solution, observed by unstable lobes,

located on the left side of the resonance curve has been

found. A particular attention in the study has been paid

to the influence of the temperature on quantitative and

qualitative changes in the beam response. It has been

shown that elevated temperature shifts the resonance

zone in the direction of lower frequencies and increases

amplitude of oscillations. This phenomenon occurs

around all three considered resonance areas, however

this is the most exposed near the first natural frequency.

An increase of the temperature makes unstable not only

the lobes occurring on the left side of the resonance

curve. Also the instability is observed on the right site

of the curve for high frequencies. Above a certain

temperature threshold two additional branches arise on

the resonance curve. Furthermore, the elevated tem-

perature for low excitation frequency may transit the

beam into the chaotic oscillation region. Decreased

Fig. 8 Resonance curves around the first natural frequency for excitation amplitude p1 = 4 9 10-5 and temperatures; DT ¼ 100;
b zoom of the low frequency lobes

Fig. 9 Poincaré map a and basins of attractions b for p1 ¼ 4� 10�5;DT ¼ 100 and X ¼ 0:02
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temperature reduces chaotic oscillations and then the

system goes to regular periodic motion. Varying

temperature about 1� we may switch the system

between chaotic or regular attractor. The full coupled

thermomechanical model subjected to a short or long

time heat flux will be investigated in the further work.
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Appendix 1: Eigenvalue problem

In order to reduce PDEs into ODEs the normal modes

of free vibrations of the Timoshenko beam have been

taken into account. Equations of motion of linear

natural frequencies have the form [13, 20]:

d2wn

dx2
þ ba

dwn

dx
� wn

� �
� x2

nwn ¼ 0 ð40Þ

b
d2wn

dx2
� dwn

dx

� �
� x2

nwn ¼ 0 ð41Þ

In further investigations we assume a simply sup-

ported beam (SS-SS). For this case eigenvalues and

eigenmodes have an explicit expressions. The eigen-

values can be determined from dependencies

xn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o1n � o2n

2b�1

r
ð42Þ

where

o1n ¼ aþ n2p2ð1þ b�1Þ ;

o2n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 2an2p2ð1þ b�1Þ þ n4p4ð1� b�1Þ2

q

and eigenmodes are described by functions

wnðxÞ ¼ Bn sinðs21nxÞ
wnðxÞ ¼ Bnðs2

21n � x2
nb
�1Þ cosðs21nxÞ=s21n

ð43Þ

where

Numerical calculations of the eigenvalue problem

have been done for the case of a composite beam with

a rectangular cress-section for the physical parameters

given in Appendix 2. For this case the dimensionless

parameters a and b have values

a ¼ 120000; b ¼ 0:328342 ð45Þ

and the first three natural dimensionless frequencies

xn and parameters s21n take values

x01 ¼ 0:0284864; x02 ¼ 0:113889; x03

¼ 0:256037 ð46Þ

s211 ¼ 3:14159; s212 ¼ 6:28319; s213 ¼ 9:42478

The eigenmodes are defined by (4). The amplitudes

Bn, for the first three modes and assumed data, are

determined from the orthogonality condition (8):

B1 ¼ 0:429049; B2 ¼ 0:222499; B3 ¼ 0:149548 ð47Þ

Noting that in (5) s21n = np , the normalized modes

are expressed by equations

w1ðxÞ¼ 0:429049sinðpxÞ; w1ðxÞ¼ 1:34756cosðpxÞ
w2ðxÞ¼ 0:222499sinð2pxÞ; w2ðxÞ¼ 1:3966cosð2pxÞ
w3ðxÞ¼ 0:149548sinð3pxÞ; w3ðxÞ¼ 1:40628cosð3pxÞ

ð48Þ
The mode shapes for wn and wn corresponding to

Eq. (A3) are presented in Fig. 12a, b, respectively. The

modes computed for considered data are used for

PDEs reduction reported in Appendix 2.

Appendix 2: Coefficients of a reduced three modal

beam

The considered structure is a symmetric cross-ply

laminated beam of length L = 0.5 m, composed of 20

orthotropic layers, each 0.25 mm thick. The two layers

located above and under the neutral surface have 0–90

orientation with respect to x-axis (see Fig. 13). The

whole beam sequence of layers (plies) is [(0/90)10]S.

Material characteristics of the single ply are as

follows:

Young’s moduli: E1 = 56 GPa, E2 = 16 GPa,

Poisson’s ratio: m = 0.269,

thermal expansion coefficient: aT = 13.2x10-6

K-1,

mass density q = 2052 kg/m3.

s21n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5x2

nð1þ b�1Þ þ 0:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4

nð1þ b�1Þ2 þ 4x2
nða� b�1x2

nÞ
qr

ð44Þ
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These characteristics correspond to a glass-epoxy

composite material. The effective Young modulus of

the beam is: Eef = 41.92 GPa.

The effective Young modulus have been computed

considering layers having E1 with orientation 0� and

layers having E2 with orientation 90�. Using the

simple summation formulae:

A55 ¼ b
PNl

k¼1

GðkÞðzðkÞ � zðk�1ÞÞ ¼ b
PNl

k¼1

GðkÞhðkÞ

D ¼ b
3

PNl

k¼1

EðkÞðzðkÞ3 � zðk�1Þ3Þ; aT ¼
PNl

k¼1

aðkÞT

ð49Þ

we obtain the equations of composite Timoshenko

beam in the form:

� o
ox

D ow
ox

 �
þ ksA55

ow
ox
� w

� �
� RI o2w

ot2 ¼ 0

ks o
ox

A55
ow
ox
� w

� �� 	
þ RH o2w

ot2 ¼ �p
ð50Þ

To obtain Eef in the usual form of the Timoshenko beam

the coefficient D is divided by b
3

PNl

k¼1

ðzðkÞ3 � zðk�1Þ3Þ:

Dimensionless coefficients take values

a¼ 120000; b¼ 0:328342

mode 1

C1;111 ¼ 0:412628; C1;112 ¼ �1:71194 ;
C1;122 ¼ 0:443911;C1;123 ¼ �1:79032;
C1;133 ¼ 0:451277; C1;113 ¼ 1:72608;

CT
1 ¼ �2:17116 � 10�5; C

f
1 ¼ 0:0920439

ð51Þ

mode 2

C2;222 ¼ 0:477566; C2;122 ¼ �1:84173 ;

C2;223 ¼ �1:92605; C2;211 ¼ 0:443911;

C2;123 ¼ 1:85694; C2;233 ¼ 0:48549;

CT
2 ¼ �2:33577 � 10�5; C

f
2 ¼ 0:0247555

ð52Þ

mode 3

C3;333 ¼ 0:493546; C3;233 ¼ �1:95801 ;

C3;133 ¼ 1:88775 ; C3;113 ¼ 0:48549;

C3;123 ¼ �1:87228; C3;223 ¼ 0:48549;

CT
3 ¼ �2:37452� 10�5; C

f
3 ¼ 0:011185

ð53Þ

Fig. 13 A schematic geometry representation of the symmetric

cross-ply laminated beam

Fig. 12 Normalised first three eigenmodes of SS-SS Timoshenko beam, a wn(x), b wn(x)
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Appendix 3: Coefficients of the characteristic Eq. (36)
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